Skip to main content

Improving a Bayesian Decision Model for Supporting Diagnosis of Alzheimer’s Disease and Related Disorders

  • Conference paper
  • First Online:
Book cover Machine Learning and Data Mining in Pattern Recognition (MLDM 2017)

Abstract

Alzheimer’s Disease (AD) is a degenerative disease with high prevalence in the elderly population. Its symptoms are often related to difficulty in remembering new information and include impaired judgment, disorientation, confusion, behavioral changes and difficulty in speaking and walking. Clinical Decision Support Systems can be designed to improve clinical decision-making by making the physician aware of the most probable diagnosis given the patient health records, and then reducing AD diagnostic error rates. This work extends a previous discrete Bayesian decision model for supporting diagnosis of AD and related disorders and proposes improvements in this model following two approaches: mixing continuous and discrete nodes by implementing a Hybrid Logistic Regression-Naïve Bayes model and relaxing independence assumptions by adopting the AnDE (Averaged n-Dependence Estimators) model. Our proposal presents better performance results. The 4-fold cross-validation results on CAD (Center for Alzheimer’s Disease and Related Disorders) patient dataset showed that the A2DE classifier (AnDE with n = 2) outperforms the previous discrete Bayesian network for AD considering all proposed measures: Area Under Receiver Operating Curve (AUC), F1-score, Mean Square Error (MSE) and Mean Cross-Entropy (MXE). Also, the Hybrid Logistic Regression-Naïve Bayes model outperforms the previous discrete Bayesian network for dementia considering MSE and, for AD, considering AUC and MSE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.cs.waikato.ac.nz/ml/weka/.

  2. 2.

    https://download.bayesfusion.com/files.html.

  3. 3.

    http://www.hugin.com.

References

  1. Sosa-Ortiz, A., Acosta-Castillo, I., Prince, M.: Epidemiology of dementias and Alzheimer’s disease. Arch. Med. Res. 43(8), 600–608 (2012)

    Article  Google Scholar 

  2. Newman-Toker, D., Pronovost, P.: Diagnostic errors: the next frontier for patient safety. J. Am. Med. Assoc. (JAMA) 301(10), 1060–1062 (2009)

    Article  Google Scholar 

  3. Berner, E.S.: Clinical Decision Support Systems: Theory and Practice. Springer, New York (2007)

    Book  Google Scholar 

  4. Haynes, R.B., Wilczynski, N.L.: Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: methods of a decision-maker-researcher partnership systematic review. Implement Sci. 5(1), 12 (2010)

    Article  Google Scholar 

  5. Kong, G., Xu, D., Yang, J.: Clinical decision support systems: a review on knowledge representation and inference under uncertainties. Int. J. Comput. Intell. Syst. 1(2), 159–167 (2008)

    Google Scholar 

  6. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Springer, New York (2007)

    Book  MATH  Google Scholar 

  7. Pradhan, M., Provan, G., Middleton, B., Henrion, M.: Knowledge engineering for large belief networks. In: Tenth Conference of Uncertainty in Artificial Intelligence, pp. 484–490. Morgan Kaufmann Publishers Inc., San Francisco (1994)

    Google Scholar 

  8. Seixas, F.L., Zadrozny, B., Laks, J., Conci, A., Muchaluat-Saade, D.C.: A Bayesian network decision model for supporting the diagnosis of dementia, Alzheimer’s disease and mild cognitive impairment. Comput. Biol. Med. 51, 140–158 (2014)

    Article  Google Scholar 

  9. Langseth, H., Nielsen, T.D., Rumí, R., Salmerón, A.: Inference in hybrid Bayesian networks. Reliab. Eng. Syst. Saf. 94(10), 1499–1509 (2009)

    Article  Google Scholar 

  10. McGeachie, M.J., Chang, H., Weiss, S.T.: CGBayesNets: conditional Gaussian Bayesian network learning and inference with mixed discrete and continuous data. PLoS Comput. Biol. 10, 6 (2014)

    Article  Google Scholar 

  11. Webb, G.I., Boughton, J.R., Wang, Z.: Not so Naïve Bayes: aggregating one-dependence estimators. Mach. Learn. 58(1), 5–24 (2005)

    Article  MATH  Google Scholar 

  12. Pinheiro, P.R., Castro, A., Pinheiro, M.: A multicriteria model applied in the diagnosis of Alzheimer’s disease: a Bayesian network. In: Proceedings of the 11th IEEE International Conference on Computational Science and Engineering, CSE 2008, São Paulo (2008)

    Google Scholar 

  13. Fillenbaum, G., van Belle, G., Morris, J., Mohs, R., Mirra, S., Davis, P., Tariot, P., Silverman, J., Clark, C., Welsh-Bohmer, K.: Consortium to establish a registry for Alzheimer’s disease (CERAD): the first twenty years. Alzheimer’s Dement. J. Alzheimer’s Assoc. 4(2), 96–109 (2008)

    Article  Google Scholar 

  14. Moreira, L.B., Namen, A.A.: System predictive for Alzheimer’s disease in clinical trial. J. Health Inform. 8, 3 (2016)

    Google Scholar 

  15. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Methodol. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  16. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309–347 (1992)

    MATH  Google Scholar 

  17. Murphy, K.: The Bayes net toolbox for Matlab. Comput. Sci. Stat. 33(2), 1024–1034 (2001)

    Google Scholar 

  18. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    MATH  Google Scholar 

  19. Kononenko I.: On biases in estimating multi-valued attributes. In: International Joint Conference on Artificial Intelligence, vol. 14, pp. 1034–1040. Lawrence Erlbaum Associates, Montreal (1995)

    Google Scholar 

  20. Lucas, P.J.F., Hommersom, A.: Modeling the interactions between discrete and continuous causal factors in Bayesian networks. Int. J. Intell. Syst. 30(3), 209–235 (2015)

    Article  Google Scholar 

  21. Shenoy, P.P.: Inference in hybrid Bayesian networks using mixtures of Gaussians. arXiv preprint arXiv:1206.6877 (2012)

  22. Tan, Y., Moses, P.P., Chan, W., Romberg, P.M.: On construction of hybrid logistic regression-Naïve Bayes model for classification. In: Proceedings of the Eighth International Conference on Probabilistic Graphical Models, Lugano, 6–9 September 2016

    Google Scholar 

  23. Dash, D., Druzdzel, M.J.: Robust independence testing for constraint-based learning of causal structure. In: Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, pp. 167–174. Morgan Kaufmann Publishers Inc., San Francisco (2002)

    Google Scholar 

  24. Zhang, H., Jiang, L., Su J.: Hidden Naïve Bayes. In: Proceedings of the Twentieth National Conference on Artificial Intelligence, Pennsylvania, 9–13 July 2005

    Google Scholar 

  25. Webb, G.I., Boughton, J.R., Zheng, F., Ting, K.M., Salem, H.: Learning by extrapolation from marginal to full-multivariate probability distributions: decreasingly Naïve Bayesian classification. Mach. Learn. 86(2), 233–272 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

  27. Gaag, L.C., Renooij, S., Feelders, A., Groote, A., Eijkemans, M.J.C., Broekmans, F.J., Fauser, B.C.J .M.: Aligning Bayesian network classifiers with medical contexts. In: Perner, P. (ed.) MLDM 2009. LNCS (LNAI), vol. 5632, pp. 787–801. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03070-3_59

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Medeiros Carvalho .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 6. aChi-square independence tests in Alzheimer’s Disease dataset: values of p.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Carvalho, C.M., Seixas, F.L., Conci, A., Muchaluat-Saade, D.C., Laks, J. (2017). Improving a Bayesian Decision Model for Supporting Diagnosis of Alzheimer’s Disease and Related Disorders. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2017. Lecture Notes in Computer Science(), vol 10358. Springer, Cham. https://doi.org/10.1007/978-3-319-62416-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62416-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62415-0

  • Online ISBN: 978-3-319-62416-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics