Skip to main content

Degree of Conversion

  • Chapter
  • First Online:
Dental Composite Materials for Direct Restorations

Abstract

The degree of conversion (DC) can be defined as the extent to which monomers react to form polymers or as the ratio of C=C double bonds that are converted into C-C single bonds. In the polymerization of bifunctional methacrylates, the complete conversion is never attainable because diffusional restrictions in later stages of the polymerization reaction prevent a certain amount of monomer molecules from reaching reaction sites. Thus the DC in dental composites usually varies between 50 and 80%. The DC is a fundamental attribute of a cured composite since it affects virtually all other material properties which are important for the clinical success of the restoration. Although the composition of contemporary composites is fine-tuned to attain optimal DC and the related properties if properly handled and light-cured, poor DC due to unfavorable curing conditions or operators’ insufficient understanding of the curing procedure may affect critical material properties and increase the risk of clinical failure. This chapter reviews various factors determining the DC, properties of composite materials which are dependent on the DC, as well as methods used to evaluate the DC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ilie N, Hickel R. Resin composite restorative materials. Aust Dent J. 2011;56(Suppl 1):59–66.

    Article  PubMed  Google Scholar 

  2. Leprince JG, Palin WM, Hadis MA, Devaux J, Leloup G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent Mater. 2013;29(2):139–56.

    Article  PubMed  Google Scholar 

  3. Ferracane JL. Resin composite—state of the art. Dent Mater. 2011;27(1):29–38.

    Article  PubMed  Google Scholar 

  4. Yoshida K, Greener EH. Effects of two amine reducing agents on the degree of conversion and physical properties of an unfilled light-cured resin. Dent Mater. 1993;9(4):246–51.

    Article  PubMed  Google Scholar 

  5. Calheiros FC, Daronch M, Rueggeberg FA, Braga RR. Degree of conversion and mechanical properties of a BisGMA:TEGDMA composite as a function of the applied radiant exposure. J Biomed Mater Res B Appl Biomater. 2008;84(2):503–9.

    Article  PubMed  Google Scholar 

  6. Krifka S, Seidenader C, Hiller KA, Schmalz G, Schweikl H. Oxidative stress and cytotoxicity generated by dental composites in human pulp cells. Clin Oral Investig. 2012;16(1):215–24.

    Article  PubMed  Google Scholar 

  7. Tarle Z, Meniga A, Ristic M, Sutalo J, Pichler G, Davidson CL. The effect of the photopolymerization method on the quality of composite resin samples. J Oral Rehabil. 1998;25(6):436–42.

    Article  PubMed  Google Scholar 

  8. Knezević A, Tarle Z, Meniga A, Sutalo J, Pichler G, Ristić M. Degree of conversion and temperature rise during polymerization of composite resin samples with blue diodes. J Oral Rehabil. 2001;28(6):586–91.

    Article  PubMed  Google Scholar 

  9. Tarle Z, Meniga A, Knezević A, Sutalo J, Ristić M, Pichler G. Composite conversion and temperature rise using a conventional, plasma arc, and an experimental blue LED curing unit. J Oral Rehabil. 2002;29(7):662–7.

    Article  PubMed  Google Scholar 

  10. Miletic V, Santini A. Optimizing the concentration of 2,4,6-trimethylbenzoyldiphenylphosphine oxide initiator in composite resins in relation to monomer conversion. Dent Mater J. 2012;31(5):717–23.

    Article  PubMed  Google Scholar 

  11. Turssi CP, Ferracane JL, Vogel K. Filler features and their effects on wear and degree of conversion of particulate dental resin composites. Biomaterials. 2005;26(24):4932–7.

    Article  PubMed  Google Scholar 

  12. Uctasli S, Tezvergil A, Lassila LV, Vallittu PK. The degree of conversion of fiber-reinforced composites polymerized using different light-curing sources. Dent Mater. 2005;21(5):469–75.

    Article  PubMed  Google Scholar 

  13. Tarle Z, Knezevic A, Demoli N, Meniga A, Sutaloa J, Unterbrink G, Ristic M, Pichler G. Comparison of composite curing parameters: effects of light source and curing mode on conversion, temperature rise and polymerization shrinkage. Oper Dent. 2006;31(2):219–26.

    Article  PubMed  Google Scholar 

  14. Czasch P, Ilie N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investig. 2012;17(1):227–35.

    Article  PubMed  Google Scholar 

  15. Tarle Z, Attin T, Marovic D, Andermatt L, Ristic M, Taubock TT. Influence of irradiation time on subsurface degree of conversion and microhardness of high-viscosity bulk-fill resin composites. Clin Oral Investig. 2015;19(4):831–40.

    Article  PubMed  Google Scholar 

  16. Taubock TT, Tarle Z, Marovic D, Attin T. Pre-heating of high-viscosity bulk-fill resin composites: effects on shrinkage force and monomer conversion. J Dent. 2015;43(11):1358–64.

    Article  PubMed  Google Scholar 

  17. Par M, Gamulin O, Marovic D, Klaric E, Tarle Z. Raman spectroscopic assessment of degree of conversion of bulk-fill resin composites—changes at 24 hours post cure. Oper Dent. 2015;40(3):E92–101.

    Article  PubMed  Google Scholar 

  18. Par M, Gamulin O, Marovic D, Skenderovic H, Klaric E, Tarle Z. Conversion and temperature rise of remineralizing composites reinforced with inert fillers. J Dent. 2016;48:26–33.

    Article  PubMed  Google Scholar 

  19. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci. 1997;105(2):97–116.

    Article  PubMed  Google Scholar 

  20. Amirouche-Korichi A, Mouzali M, Watts DC. Effects of monomer ratios and highly radiopaque fillers on degree of conversion and shrinkage-strain of dental resin composites. Dent Mater. 2009;25(11):1411–8.

    Article  PubMed  Google Scholar 

  21. Stansbury JW. Dimethacrylate network formation and polymer property evolution as determined by the selection of monomers and curing conditions. Dent Mater. 2012;28(1):13–22.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Skrtic D, Antonucci JM. Effect of chemical structure and composition of the resin phase on vinyl conversion of amorphous calcium phosphate-filled composites. Polym Int. 2007;56(4):497–505.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lu H, Trujillo-Lemon M, Ge J, Stansbury JW. Dental resins based on dimer acid dimethacrylates: a route to high conversion with low polymerization shrinkage. Compend Contin Educ Dent. 2010;31(Special Issue 2):1–4.

    PubMed  Google Scholar 

  24. Bracho-Troconis C, Trujillo-Lemon M, Boulden J, Wong N, Wall K, Esquibel K. Characterization of N’Durance: a nanohybrid composite based on new nano-dimer technology. Compend Contin Educ Dent. 2010;31(Special Issue 2):5–9.

    PubMed  Google Scholar 

  25. Kurokawa R, Finger WJ, Hoffmann M, Endo T, Kanehira M, Komatsu M, Manabe A. Interactions of self-etch adhesives with resin composites. J Dent. 2007;35(12):923–9.

    Article  PubMed  Google Scholar 

  26. Lee SK, Kim TW, Son SA, Park JK, Kim JH, Kim HI, Kwon YH. Influence of light-curing units on the polymerization of low-shrinkage composite resins. Dent Mater J. 2013;32(5):688–94.

    Article  PubMed  Google Scholar 

  27. Bucuta S, Ilie N. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin Oral Investig. 2014;18(8):1991–2000.

    Article  PubMed  Google Scholar 

  28. Rueggeberg FA. State-of-the-art: dental photocuring—a review. Dent Mater. 2011;27(1):39–52.

    Article  PubMed  Google Scholar 

  29. Leloup G, Holvoet PE, Bebelman S, Devaux J. Raman scattering determination of the depth of cure of light-activated composites: influence of different clinically relevant parameters. J Oral Rehabil. 2002;29(6):510–5.

    Article  PubMed  Google Scholar 

  30. Jakubiak J, Allonas X, Fouassier JP, Sionkowska A, Andrzejewska E, Linden LÅ, Rabek JF. Camphorquinone–amines photoinitiating systems for the initiation of free radical polymerization. Polymer. 2003;44(18):5219–26.

    Article  Google Scholar 

  31. Neshchadin D, Rosspeintner A, Griesser M, Lang B, Mosquera-Vazquez S, Vauthey E, Gorelik V, Liska R, Hametner C, Ganster B, Saf R, Moszner N, Gescheidt G. Acylgermanes: photoinitiators and sources for Ge-centered radicals. Insights into their reactivity. J Am Chem Soc. 2013;135(46):17314–21.

    Article  PubMed  Google Scholar 

  32. Leprince JG, Hadis M, Shortall AC, Ferracane JL, Devaux J, Leloup G, Palin WM. Photoinitiator type and applicability of exposure reciprocity law in filled and unfilled photoactive resins. Dent Mater. 2011;27(2):157–64.

    Article  PubMed  Google Scholar 

  33. Neumann MG, Schmitt CC, Ferreira GC, Correa IC. The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units. Dent Mater. 2006;22(6):576–84.

    Article  PubMed  Google Scholar 

  34. Moszner N, Fischer UK, Ganster B, Liska R, Rheinberger V. Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dent Mater. 2008;24(7):901–7.

    Article  PubMed  Google Scholar 

  35. Jandt KD, Mills RW, Blackwell GB, Ashworth SH. Depth of cure and compressive strength of dental composites cured with blue light emitting diodes (LEDs). Dent Mater. 2000;16(1):41–7.

    Article  PubMed  Google Scholar 

  36. Pradhan RD, Melikechi N, Eichmiller F. The effect of irradiation wavelength bandwidth and spot size on the scraping depth and temperature rise in composite exposed to an argon laser or a conventional quartz–tungsten–halogen source. Dent Mater. 2002;18(3):221–6.

    Article  PubMed  Google Scholar 

  37. Tarle Z, Meniga A, Ristic M, Sutalo J, Pichler G. Polymerization of composites using pulsed laser. Eur J Oral Sci. 1995;103(6):394–8.

    Article  PubMed  Google Scholar 

  38. Meniga A, Tarle Z, Ristic M, Sutalo J, Pichler G. Pulsed blue laser curing of hybrid composite resins. Biomaterials. 1997;18(20):1349–54.

    Article  PubMed  Google Scholar 

  39. Park SH, Krejci I, Lutz F. Microhardness of resin composites polymerized by plasma arc or conventional visible light curing. Oper Dent. 2002;27(1):30–7.

    PubMed  Google Scholar 

  40. Knezević A, Tarle Z, Meniga A, Sutalo J, Pichler G, Ristić M. Photopolymerization of composite resins with plasma light. J Oral Rehabil. 2002;29(8):782–6.

    Article  PubMed  Google Scholar 

  41. Burtscher P. Visible light curing of composite resins—report. Research and development Ivoclar Vivadent AG, Schaan, Liechtenstein 18; 2007. p. 29–32.

    Google Scholar 

  42. Silikas N, Eliades G, Watts DC. Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent Mater. 2000;16(4):292–6.

    Article  PubMed  Google Scholar 

  43. Yap AU, Seneviratne C. Influence of light energy density on effectiveness of composite cure. Oper Dent. 2001;26(5):460–6.

    PubMed  Google Scholar 

  44. Ilie N, Jelen E, Hickel R. Is the soft-start polymerisation concept still relevant for modern curing units? Clin Oral Investig. 2011;15(1):21–9.

    Article  PubMed  Google Scholar 

  45. Asmussen E, Peutzfeldt A. Influence of pulse-delay curing on softening of polymer structures. J Dent Res. 2001;80(6):1570–3.

    Article  PubMed  Google Scholar 

  46. Daronch M, Rueggeberg FA, De Goes MF, Giudici R. Polymerization kinetics of pre-heated composite. J Dent Res. 2006;85(1):38–43.

    Article  PubMed  Google Scholar 

  47. Lohbauer U, Zinelis S, Rahiotis C, Petschelt A, Eliades G. The effect of resin composite pre-heating on monomer conversion and polymerization shrinkage. Dent Mater. 2009;25(4):514–9.

    Article  PubMed  Google Scholar 

  48. Andrzejewska E. Photopolymerization kinetics of multifunctional monomers. Prog Polym Sci. 2001;26:605–65.

    Article  Google Scholar 

  49. Burtscher P. Stability of radicals in cured composite materials. Dent Mater. 1993;9(4):218–21.

    Article  PubMed  Google Scholar 

  50. Leprince J, Lamblin G, Truffier-Boutry D, Demoustier-Champagne S, Devaux J, Mestdagh M, Leloup G. Kinetic study of free radicals trapped in dental resins stored in different environments. Acta Biomater. 2009;5(7):2518–24.

    Article  PubMed  Google Scholar 

  51. Par M, Lapas-Barisic M, Gamulin O, Panduric V, Spanovic N, Tarle Z. Long term degree of conversion of two bulk-fill composites. Acta Stomatol Croat. 2016;50(4):292–300.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Opdam NJ, van de Sande FH, Bronkhorst E, Cenci MS, Bottenberg P, Pallesen U, Gaengler P, Lindberg A, Huysmans MC, van Dijken JW. Longevity of posterior composite restorations: a systematic review and meta-analysis. J Dent Res. 2014;93(10):943–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Alshali RZ, Silikas N, Satterthwaite JD. Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent Mater. 2013;29(9):e213–7.

    Article  PubMed  Google Scholar 

  54. Ilie N, Hickel R. Investigations on mechanical behaviour of dental composites. Clin Oral Investig. 2009;13(4):427–38.

    Article  PubMed  Google Scholar 

  55. Price RB, Ferracane JL, Shortall AC. Light-curing units: a review of what we need to know. J Dent Res. 2015;94(9):1179–86.

    Article  PubMed  Google Scholar 

  56. Ferracane JL, Greener EH. The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J Biomed Mater Res. 1986;20(1):121–31.

    Article  PubMed  Google Scholar 

  57. Asmussen E. Restorative resins: hardness and strength vs. quantity of remaining double bonds. Scand J Dent Res. 1982;90(6):484–9.

    PubMed  Google Scholar 

  58. Lovell LG, Lu H, Elliott JE, Stansbury JW, Bowman CN. The effect of cure rate on the mechanical properties of dental resins. Dent Mater. 2001;17(6):504–11.

    Article  PubMed  Google Scholar 

  59. Lovell LG, Newman SM, Donaldson MM, Bowman CN. The effect of light intensity on double bond conversion and flexural strength of a model, unfilled dental resin. Dent Mater. 2003;19(6):458–65.

    Article  PubMed  Google Scholar 

  60. Dewaele M, Asmussen E, Peutzfeldt A, Munksgaard EC, Benetti AR, Finne G, Leloup G, Devaux J. Influence of curing protocol on selected properties of light-curing polymers: degree of conversion, volume contraction, elastic modulus, and glass transition temperature. Dent Mater. 2009;25(12):1576–84.

    Article  PubMed  Google Scholar 

  61. Chung KH, Greener EH. Correlation between degree of conversion, filler concentration and mechanical properties of posterior composite resins. J Oral Rehabil. 1990;17(5):487–94.

    Article  PubMed  Google Scholar 

  62. Leprince JG, Palin WM, Vanacker J, Sabbagh J, Devaux J, Leloup G. Physico-mechanical characteristics of commercially available bulk-fill composites. J Dent. 2014;42(8):993–1000.

    Article  PubMed  Google Scholar 

  63. Musanje L, Ferracane JL. Effects of resin formulation and nanofiller surface treatment on the properties of experimental hybrid resin composite. Biomaterials. 2004;25(18):4065–71.

    Article  PubMed  Google Scholar 

  64. Sideridou I, Tserki V, Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials. 2002;23(8):1819–29.

    Article  PubMed  Google Scholar 

  65. Hadis M, Leprince JG, Shortall AC, Devaux J, Leloup G, Palin WM. High irradiance curing and anomalies of exposure reciprocity law in resin-based materials. J Dent. 2011;39(8):549–57.

    Article  PubMed  Google Scholar 

  66. Bowman CN, Kloxin CJ. Toward an enhanced understanding and implementation of photopolymerization reactions. AIChE J. 2008;54(11):2775–95.

    Article  Google Scholar 

  67. Kannurpatti AR, Anseth JW, Bowman CN. A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photopolymerizations of multifunctional (meth)acrylates. Polymer. 1998;39(12):2507–13.

    Article  Google Scholar 

  68. Frauscher KE, Ilie N. Degree of conversion of nano-hybrid resin-based composites with novel and conventional matrix formulation. Clin Oral Investig. 2013;17(2):635–42.

    Article  PubMed  Google Scholar 

  69. Leprince JG, Leveque P, Nysten B, Gallez B, Devaux J, Leloup G. New insight into the “depth of cure” of dimethacrylate-based dental composites. Dent Mater. 2012;28(5):512–20.

    Article  PubMed  Google Scholar 

  70. Schneider LF, Moraes RR, Cavalcante LM, Sinhoreti MA, Correr-Sobrinho L, Consani S. Cross-link density evaluation through softening tests: effect of ethanol concentration. Dent Mater. 2008;24(2):199–203.

    Article  PubMed  Google Scholar 

  71. Lovell LG, Berchtold KA, Elliott JE, Lu H, Bowman CN. Understanding the kinetics and network formation of dimethacrylate dental resins. Polym Adv Technol. 2001;12:335–45.

    Article  Google Scholar 

  72. Soh MS, Yap AU. Influence of curing modes on crosslink density in polymer structures. J Dent. 2004;32(4):321–6.

    Article  PubMed  Google Scholar 

  73. Ferracane JL. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater. 1985;1(1):11–4.

    Article  PubMed  Google Scholar 

  74. Peutzfeldt A, Asmussen E. Resin composite properties and energy density of light cure. J Dent Res. 2005;84(7):659–62.

    Article  PubMed  Google Scholar 

  75. Ilie N, Obermaier J, Durner J. Effect of modulated irradiation time on the degree of conversion and the amount of elutable substances from nano-hybrid resin-based composites. Clin Oral Investig. 2014;18(1):97–106.

    Article  PubMed  Google Scholar 

  76. Barszczewska-Rybarek IM. Structure-property relationships in dimethacrylate networks based on Bis-GMA, UDMA and TEGDMA. Dent Mater. 2009;25(9):1082–9.

    Article  PubMed  Google Scholar 

  77. Rueggeberg FA, Craig RG. Correlation of parameters used to estimate monomer conversion in a light-cured composite. J Dent Res. 1988;67(6):932–7.

    Article  PubMed  Google Scholar 

  78. Rueggeberg F, Tamareselvy K. Resin cure determination by polymerization shrinkage. Dent Mater. 1995;11(4):265–8.

    Article  PubMed  Google Scholar 

  79. Braga RR, Ferracane JL. Contraction stress related to degree of conversion and reaction kinetics. J Dent Res. 2002;81(2):114–8.

    Article  PubMed  Google Scholar 

  80. Ferracane JL. Buonocore Lecture. Placing dental composites—a stressful experience. Oper Dent. 2008;33(3):247–57.

    Article  PubMed  Google Scholar 

  81. Schneider LF, Cavalcante LM, Silikas N. Shrinkage stresses generated during resin-composite applications: a review. J Dent Biomech. 2010;2010:131630.

    Article  PubMed  Google Scholar 

  82. Braga RR, Ballester RY, Ferracane JL. Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dent Mater. 2005;21(10):962–70.

    Article  PubMed  Google Scholar 

  83. Stansbury JW, Trujillo-Lemon M, Lu H, Ding X, Lin Y, Ge J. Conversion-dependent shrinkage stress and strain in dental resins and composites. Dent Mater. 2005;21(1):56–67.

    Article  PubMed  Google Scholar 

  84. Asmussen E, Peutzfeldt A. Two-step curing: influence on conversion and softening of a dental polymer. Dent Mater. 2003;19(6):466–70.

    Article  PubMed  Google Scholar 

  85. Feng L, Suh BI. A mechanism on why slower polymerization of a dental composite produces lower contraction stress. J Biomed Mater Res B Appl Biomater. 2006;78(1):63–9.

    Article  PubMed  Google Scholar 

  86. Cunha LG, Alonso RC, Pfeifer CS, Correr-Sobrinho L, Ferracane JL, Sinhoreti MA. Modulated photoactivation methods: influence on contraction stress, degree of conversion and push-out bond strength of composite restoratives. J Dent. 2007;35(4):318–24.

    Article  PubMed  Google Scholar 

  87. Hofmann N, Denner W, Hugo B, Klaiber B. The influence of plasma arc vs. halogen standard or soft-start irradiation on polymerization shrinkage kinetics of polymer matrix composites. J Dent. 2003;31(6):383–93.

    Article  PubMed  Google Scholar 

  88. Ferracane JL. Elution of leachable components from composites. J Oral Rehabil. 1994;21(4):441–52.

    Article  PubMed  Google Scholar 

  89. Van Landuyt KL, Nawrot T, Geebelen B, De Munck J, Snauwaert J, Yoshihara K, Scheers H, Godderis L, Hoet P, Van Meerbeek B. How much do resin-based dental materials release? A meta-analytical approach. Dent Mater. 2011;27(8):723–47.

    Article  PubMed  Google Scholar 

  90. Nomura Y, Teshima W, Kawahara T, Tanaka N, Ishibashi H, Okazaki M, Arizono K. Genotoxicity of dental resin polymerization initiators in vitro. J Mater Sci Mater Med. 2006;17(1):29–32.

    Article  PubMed  Google Scholar 

  91. Durner J, Obermaier J, Draenert M, Ilie N. Correlation of the degree of conversion with the amount of elutable substances in nano-hybrid dental composites. Dent Mater. 2012;28(11):1146–53.

    Article  PubMed  Google Scholar 

  92. Pongprueksa P, De Munck J, Duca RC, Poels K, Covaci A, Hoet P, Godderis L, Van Meerbeek B, Van Landuyt KL. Monomer elution in relation to degree of conversion for different types of composite. J Dent. 2015;43(12):1448–55.

    Article  PubMed  Google Scholar 

  93. Randolph LD, Palin WM, Bebelman S, Devaux J, Gallez B, Leloup G, Leprince JG. Ultra-fast light-curing resin composite with increased conversion and reduced monomer elution. Dent Mater. 2014;30(5):594–604.

    Article  PubMed  Google Scholar 

  94. Martin N, Jedynakiewicz N. Measurement of water sorption in dental composites. Biomaterials. 1998;19(1–3):77–83.

    Article  PubMed  Google Scholar 

  95. Rueggeberg FA, Cole MA, Looney SW, Vickers A, Swift EJ. Comparison of manufacturer-recommended exposure durations with those determined using biaxial flexure strength and scraped composite thickness among a variety of light-curing units. J Esthet Restor Dent. 2009;21(1):43–61.

    Article  PubMed  Google Scholar 

  96. Brambilla E, Gagliani M, Ionescu A, Fadini L, Garcia-Godoy F. The influence of light-curing time on the bacterial colonization of resin composite surfaces. Dent Mater. 2009;25(9):1067–72.

    Article  PubMed  Google Scholar 

  97. Khalichi P, Singh J, Cvitkovitch DG, Santerre JP. The influence of triethylene glycol derived from dental composite resins on the regulation of Streptococcus mutans gene expression. Biomaterials. 2009;30(4):452–9.

    Article  PubMed  Google Scholar 

  98. Mjor IA. Clinical diagnosis of recurrent caries. J Am Dent Assoc. 2005;136(10):1426–33.

    Article  PubMed  Google Scholar 

  99. da Silva EM, Almeida GS, Poskus LT, Guimarães JG. Relationship between the degree of conversion, solubility and salivary sorption of a hybrid and a nanofilled resin composite. J Appl Oral Sci. 2008;16(2):161–6.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yiu CK, King NM, Carrilho MR, Sauro S, Rueggeberg FA, Prati C, Carvalho RM, Pashley DH, Tay FR. Effect of resin hydrophilicity and temperature on water sorption of dental adhesive resins. Biomaterials. 2006;27(9):1695–703.

    Article  PubMed  Google Scholar 

  101. Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater. 2006;22(3):211–22.

    Article  PubMed  Google Scholar 

  102. Pearson GJ, Longman CM. Water sorption and solubility of resin-based materials following inadequate polymerization by a visible-light curing system. J Oral Rehabil. 1989;16(1):57–61.

    Article  PubMed  Google Scholar 

  103. Drummond JL. Degradation, fatigue, and failure of resin dental composite materials. J Dent Res. 2008;87(8):710–9.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Soares LE, Nahorny S, Martin AA. FT-Raman spectroscopy study of organic matrix degradation in nanofilled resin composite. Microsc Microanal. 2013;19(2):327–34.

    Article  PubMed  Google Scholar 

  105. Dietschi D, Campanile G, Holz J, Meyer JM. Comparison of the color stability of ten new-generation composites: an in vitro study. Dent Mater. 1994;10(6):353–62.

    Article  PubMed  Google Scholar 

  106. Asmussen E. Factors affecting the color stability of restorative resins. Acta Odontol Scand. 1983;41(1):11–8.

    Article  PubMed  Google Scholar 

  107. Ferracane JL, Berge HX, Condon JR. In vitro aging of dental composites in water—effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res. 1998;42(3):465–72.

    Article  PubMed  Google Scholar 

  108. Ruyter IE. Methacrylate-based polymeric dental materials: conversion and related properties. Summary and review. Acta Odontol Scand. 1982;40(5):359–76.

    Article  PubMed  Google Scholar 

  109. Sideridou ID, Achilias DS. Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. J Biomed Mater Res B Appl Biomater. 2005;74(1):617–26.

    Article  PubMed  Google Scholar 

  110. Chalmers JM, Griffiths PR, editors. Handbook of vibrational spectroscopy. Chichester: Wiley; 2001.

    Google Scholar 

  111. Moraes LG, Rocha RS, Menegazzo LM, de Araújo EB, Yukimito K, Moraes JC. Infrared spectroscopy: a tool for determination of the degree of conversion in dental composites. J Appl Oral Sci. 2008;16(2):145–9.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ruyter IE, Svendsen SA. Remaining methacrylate groups in composite restorative materials. Acta Odontol Scand. 1978;36(2):75–82.

    Article  PubMed  Google Scholar 

  113. Ruyter IE, Oysaed H. Conversion in different depths of ultraviolet and visible light activated composite materials. Acta Odontol Scand. 1982;40(3):179–92.

    Article  PubMed  Google Scholar 

  114. Shin WS, Li XF, Schwartz B, Wunder SL, Baran GR. Determination of the degree of cure of dental resins using Raman and FT-Raman spectroscopy. Dent Mater. 1993;9(5):317–24.

    Article  PubMed  Google Scholar 

  115. Pianelli C, Devaux J, Bebelman S, Leloup G. The micro-Raman spectroscopy, a useful tool to determine the degree of conversion of light-activated composite resins. J Biomed Mater Res. 1999;48(5):675–81.

    Article  PubMed  Google Scholar 

  116. Al-Ahdal K, Ilie N, Silikas N, Watts DC. Polymerization kinetics and impact of post polymerization on the degree of conversion of bulk-fill resin-composite at clinically relevant depth. Dent Mater. 2015;31(10):1207–13.

    Article  PubMed  Google Scholar 

  117. Smith BC. Fundamentals of Fourier transform infrared spectroscopy. 2nd ed. Boca Raton, FL: CRC Press, Taylor & Francis Group; 2011.

    Book  Google Scholar 

  118. Marovic D, Taubock TT, Attin T, Panduric V, Tarle Z. Monomer conversion and shrinkage force kinetics of low-viscosity bulk-fill resin composites. Acta Odontol Scand. 2015;73(6):474–80.

    Article  PubMed  Google Scholar 

  119. Acquaviva PA, Cerutti F, Adami G, Gagliani M, Ferrari M, Gherlone E, Cerutti A. Degree of conversion of three composite materials employed in the adhesive cementation of indirect restorations: a micro-Raman analysis. J Dent. 2009;37(8):610–5.

    Article  PubMed  Google Scholar 

  120. Rueggeberg FA, Hashinger DT, Fairhurst CW. Calibration of FTIR conversion analysis of contemporary dental resin composites. Dent Mater. 1990;6(4):241–9.

    Article  PubMed  Google Scholar 

  121. Nomoto R, Asada M, McCabe JF, Hirano S. Light exposure required for optimum conversion of light activated resin systems. Dent Mater. 2006;22(12):1135–42.

    Article  PubMed  Google Scholar 

  122. De Santis A. Photo-polymerisation effects on the carbonyl CO bands of composite resins measured by micro-Raman spectroscopy. Polymer. 2005;46(14):5001–4.

    Article  Google Scholar 

  123. Ilie N, Hickel R. Can CQ be completely replaced by alternative initiators in dental adhesives? Dent Mater J. 2008;27(2):221–8.

    Article  PubMed  Google Scholar 

  124. Ferracane JL, Greener EH. Fourier transform infrared analysis of degree of polymerization in unfilled resins—methods comparison. J Dent Res. 1984;63(8):1093–5.

    Article  PubMed  Google Scholar 

  125. Ilie N, Fleming GJ. In vitro comparison of polymerisation kinetics and the micro-mechanical properties of low and high viscosity giomers and RBC materials. J Dent. 2015;43(7):814–22.

    Article  PubMed  Google Scholar 

  126. Ilie N, Durner J. Polymerization kinetic calculations in dental composites: a method comparison analysis. Clin Oral Investig. 2014;18(6):1587–96.

    Article  PubMed  Google Scholar 

  127. Scherzer T, Decker U. Real-time FTIR–ATR spectroscopy to study the kinetics of ultrafast photopolymerization reactions induced by monochromatic UV light. Vib Spectrosc. 1999;19(2):385–98.

    Article  Google Scholar 

  128. Stansbury JW, Dickens SH. Determination of double bond conversion in dental resins by near infrared spectroscopy. Dent Mater. 2001;17(1):71–9.

    Article  PubMed  Google Scholar 

  129. Trujillo M, Newman SM, Stansbury JW. Use of near-IR to monitor the influence of external heating on dental composite photopolymerization. Dent Mater. 2004;20(8):766–77.

    Article  PubMed  Google Scholar 

  130. Lewis IR, Edwards HGM, editors. Handbook of Raman spectroscopy. New York: CRC Press, Taylor & Francis Group; 2001.

    Google Scholar 

  131. Stansbury JW. Curing dental resins and composites by photopolymerization. J Esthet Dent. 2000;12(6):300–8.

    Article  PubMed  Google Scholar 

  132. Li X, Pongprueksa P, Van Meerbeek B, De Munck J. Curing profile of bulk-fill resin-based composites. J Dent. 2015;43(6):664–72.

    Article  PubMed  Google Scholar 

  133. Par M, Gamulin O, Marovic D, Klaric E, Tarle Z. Effect of temperature on post-cure polymerization of bulk-fill composites. J Dent. 2014;42(10):1255–60.

    Article  PubMed  Google Scholar 

  134. Pilo R, Cardash HS. Post-irradiation polymerization of different anterior and posterior visible light-activated resin composites. Dent Mater. 1992;8(5):299–304.

    Article  PubMed  Google Scholar 

  135. Marigheto NA, Kemsley EK, Potter J, Belton PS, Wilson RH. Effects of sample heating in FT-Raman spectra of biological materials. Spectrochim Acta A Mol Biomol Spectrosc. 1996;52(12):1571–9.

    Article  Google Scholar 

  136. Halvorson RH, Erickson RL, Davidson CL. The effect of filler and silane content on conversion of resin-based composite. Dent Mater. 2003;19(4):327–33.

    Article  PubMed  Google Scholar 

  137. Sabbagh J, Ryelandt L, Bachérius L, Biebuyck JJ, Vreven J, Lambrechts P, Leloup G. Characterization of the inorganic fraction of resin composites. J Oral Rehabil. 2004;31(11):1090–101.

    Article  PubMed  Google Scholar 

  138. Price RB, Rueggeberg FA, Harlow J, Sullivan B. Effect of mold type, diameter, and uncured composite removal method on depth of cure. Clin Oral Investig. 2016;20(7):1699–707.

    Article  PubMed  Google Scholar 

  139. Erickson RL, Barkmeier WW. Curing characteristics of a composite. Part 2: the effect of curing configuration on depth and distribution of cure. Dent Mater. 2014;30(6):e134–45.

    Article  PubMed  Google Scholar 

  140. Price RB, Whalen JM, Price TB, Felix CM, Fahey J. The effect of specimen temperature on the polymerization of a resin-composite. Dent Mater. 2011;27(10):983–9.

    Article  PubMed  Google Scholar 

  141. Sakaguchi RL. Review of the current status and challenges for dental posterior restorative composites: clinical, chemistry, and physical behavior considerations. Summary of discussion from the Portland Composites Symposium (POCOS) June 17–19, 2004, Oregon Health and Science University, Portland, Oregon. Dent Mater. 2005;21(1):3–6.

    Article  PubMed  Google Scholar 

  142. Watts DC, Amer OM, Combe EC. Surface hardness development in light-cured composites. Dent Mater. 1987;3(5):265–9.

    Article  PubMed  Google Scholar 

  143. Marovic D, Panduric V, Tarle Z, Ristic M, Sariri K, Demoli N, Klaric E, Jankovic B, Prskalo K. Degree of conversion and microhardness of dental composite resin materials. J Mol Struct. 2013;1044:299–302.

    Article  Google Scholar 

  144. Erickson RL, Barkmeier WW, Halvorson RH. Curing characteristics of a composite – part 1: cure depth relationship to conversion, hardness and radiant exposure. Dent Mater. 2014;30(6):e125–33.

    Article  PubMed  Google Scholar 

  145. Bouschlicher MR, Rueggeberg FA, Wilson BM. Correlation of bottom-to-top surface microhardness and conversion ratios for a variety of resin composite compositions. Oper Dent. 2004;29(6):698–704.

    PubMed  Google Scholar 

  146. Miletic V, Pongprueksa P, De Munck J, Brooks NR, Van Meerbeek B. Curing characteristics of flowable and sculptable bulk-fill composites. Clin Oral Investig. 2016;21:1201–12.

    Article  PubMed  Google Scholar 

  147. Musanje L, Darvell BW. Curing-light attenuation in filled-resin restorative materials. Dent Mater. 2006;22(9):804–17.

    Article  PubMed  Google Scholar 

  148. Ilie N, Stark K. Effect of different curing protocols on the mechanical properties of low-viscosity bulk-fill composites. Clin Oral Investig. 2015;19(2):271–9.

    Article  PubMed  Google Scholar 

  149. International Standard 4049. Polymer-based restorative materials. Geneva: ISO; 2009.

    Google Scholar 

  150. Della Bona A, Wozniak WT, Watts DC. International dental standards—order out of chaos? Dent Mater. 2011;27(7):619–21.

    Article  PubMed  Google Scholar 

  151. Antonucci JM, Toth EE. Extent of polymerization of dental resins by differential scanning calorimetry. J Dent Res. 1983;62(2):121–5.

    Article  PubMed  Google Scholar 

  152. Imazato S, McCabe JF, Tarumi H, Ehara A, Ebisu S. Degree of conversion of composites measured by DTA and FTIR. Dent Mater. 2001;17(2):178–83.

    Article  PubMed  Google Scholar 

  153. Miyazaki K, Horibe T. Polymerization of multifunctional methacrylates and acrylates. J Biomed Mater Res. 1988;22(11):1011–22.

    Article  PubMed  Google Scholar 

  154. Rosentritt M, Shortall AC, Palin WM. Dynamic monitoring of curing photoactive resins: a methods comparison. Dent Mater. 2010;26(6):565–70.

    Article  PubMed  Google Scholar 

  155. Dewaele M, Truffier-Boutry D, Devaux J, Leloup G. Volume contraction in photocured dental resins: the shrinkage-conversion relationship revisited. Dent Mater. 2006;22(4):359–65.

    Article  PubMed  Google Scholar 

  156. Venhoven BA, de Gee AJ, Davidson CL. Polymerization contraction and conversion of light-curing BisGMA-based methacrylate resins. Biomaterials. 1993;14(11):871–5.

    Article  PubMed  Google Scholar 

  157. Howard B, Wilson ND, Newman SM, Pfeifer CS, Stansbury JW. Relationships between conversion, temperature and optical properties during composite photopolymerization. Acta Biomater. 2010;6(6):2053–9.

    Article  PubMed  Google Scholar 

  158. Par M, Marovic D, Skenderovic H, Gamulin O, Klaric E, Tarle Z. Light transmittance and polymerization kinetics of amorphous calcium phosphate composites. Clin Oral Investig. 2016;21:1173–82.

    Article  PubMed  Google Scholar 

  159. Steinhaus J, Hausnerova B, Haenel T, Grossgarten M, Moginger B. Curing kinetics of visible light curing dental resin composites investigated by dielectric analysis (DEA). Dent Mater. 2014;30(3):372–80.

    Article  PubMed  Google Scholar 

  160. Par M, Santic A, Gamulin O, Marovic D, Mogus-Milankovic A, Tarle Z. Impedance changes during setting of amorphous calcium phosphate composites. Dent Mater. 2016;32(11):1312–21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zrinka Tarle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Tarle, Z., Par, M. (2018). Degree of Conversion. In: Miletic, V. (eds) Dental Composite Materials for Direct Restorations. Springer, Cham. https://doi.org/10.1007/978-3-319-60961-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60961-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60960-7

  • Online ISBN: 978-3-319-60961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics