Skip to main content

Motion Style Transfer in Correlated Motion Spaces

  • Conference paper
  • First Online:
  • 3921 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10324))

Abstract

This paper presents a methodology for transferring different motion style behaviors to virtual characters. Instead of learning the differences between two motion styles and then synthesizing the new motion, the presented methodology assigns to the style transformation the motion’s distribution transformation process. Specifically, in this paper, the joint angle values of motion are considered as a three-dimensional stochastic variable and as a set of samples respectively. Thus, the correlation between three components can be computed by the covariance. The presented method imports covariance between three components of joint angle values, while calculating the mean along each of the three axes. Then, by decomposing the covariance matrix using the singular value decomposition (SVD) algorithm, it is possible to retrieve a rotation matrix. For fitting the motion style of an input to a reference motion style, the joint angle orientation of the input motion is scaled, rotated and transformed to the reference style motion, therefore enabling the motion transfer process. The results obtained from such a methodology indicate that quite reasonable motion sequences can be synthesized while keeping the required style content.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gleicher, M.: Retargetting motion to new characters. In: Annual Conference on Computer Graphics and Interactive Techniques, pp. 33–42 (1998)

    Google Scholar 

  2. Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. ACM Trans. Graph. 24(3), 1062–1070 (2005)

    Article  Google Scholar 

  3. Kovar, L., Gleicher, M.: Flexible automatic motion blending with registration curves. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 214–224 (2003)

    Google Scholar 

  4. Arikan, O., Forsyth, D.A.: Interactive motion generation from examples. ACM Trans. Graph. 21(3), 483–490 (2002)

    Article  MATH  Google Scholar 

  5. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Trans. Graph. 21(3), 473–482 (2002)

    Article  Google Scholar 

  6. Lee, J., Chai, J., Reitsma, P.S., Hodgins, J.K., Pollard, N.S.: Interactive control of avatars animated with human motion data. ACM Trans. Graph. 21(3), 491–500 (2002)

    Google Scholar 

  7. Safonova, A., Hodgins, J.K.: Construction and optimal search of interpolated motion graphs. ACM Trans. Graph. 26(3), 106 (2007)

    Article  Google Scholar 

  8. van Basten, B.J., Peeters, P.W.A.M., Egges, A.: The step space: example-based footprint-driven motion synthesis. Comput. Animat. Virtual Worlds 21(3–4), 433–441 (2010)

    Google Scholar 

  9. Mousas, C., Newbury, P., Anagnostopoulos, C.: Footprint-driven locomotion composition. Int. J. Comput. Graph. Animat. 4(4), 27–42 (2014)

    Article  Google Scholar 

  10. Mousas, C., Newbury, P., Anagnostopoulos, C.: Measuring the steps: generating action transitions between locomotion behaviours. In: International Conference on Computer Games: AI, Animation, Mobile, Interactive Multimedia, Educational & Serious Games, pp. 31–35 (2013)

    Google Scholar 

  11. Chien, Y.-R., Liu, J.-S.: Learning the stylistic similarity between human motions. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 170–179. Springer, Heidelberg (2006). doi:10.1007/11919476_18

    Chapter  Google Scholar 

  12. Urtasun, R., Glardon, R., Boulic, R., Thalmann, D., Fua, P.: Style-based motion synthesis. Comput. Graph. Forum 23(4), 799–812 (2004)

    Article  Google Scholar 

  13. Ma, X., Le, B.H., Deng, Z.: Style learning and transferring for facial animation editing. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 123–132 (2009)

    Google Scholar 

  14. Tilmanne, J., Moinet, A., Dutoit, T.: Stylistic gait synthesis based on hidden markov models. EURASIP J. Adv. Sig. Process. 1, 1–14 (2012)

    Google Scholar 

  15. Brand, M., Hertzmann, A.: Style machines. In: 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 183–192 (2000)

    Google Scholar 

  16. Rose, C., Bodenheimer, B., Cohen, M.F.: Verbs and adverbs: multidimensional motion interpolation. IEEE Comput. Graph. Appl. 18(5), 32–40 (1998)

    Article  Google Scholar 

  17. Song, J., Choi, B., Seol, Y., Noh, J.: Characteristic facial retargeting. Comput. Animat. Virtual Worlds 22(2–3), 187–194 (2011)

    Article  Google Scholar 

  18. Cao, Y., Faloutsos, P., Pighin, F.: Unsupervised learning for speech motion editing. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 225–231 (2003)

    Google Scholar 

  19. Shapiro, A., Cao, Y., Faloutsos, P.: Style components. In: Graphics Interface, pp. 33–39 (2006)

    Google Scholar 

  20. Torresani, L., Hackney, R., Bregler, C.: Learning motion style synthesis from perceptual observations. In: Advances in Neural Information Processing Systems, pp. 1393–1400 (2007)

    Google Scholar 

  21. Liu, C., Hertzmann, A., Popović, Z.: Learning physics-based motion style with nonlinear inverse optimization. ACM Trans. Graph. 24(3), 1071–1081 (2005)

    Article  Google Scholar 

  22. Elgammal, A., Lee, C.: Separating style and content on a nonlinear manifold. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 478–485 (2004)

    Google Scholar 

  23. Mousas, C., Newbury, P., Anagnostopoulos, C.N.: Evaluating the covariance matrix constraints for data-driven statistical human motion reconstruction. In: Spring Conference on Computer Graphics, pp. 99–106 (2014)

    Google Scholar 

  24. Mousas, C., Newbury, P., Anagnostopoulos, C.-N.: Data-driven motion reconstruction using local regression models. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) AIAI 2014. IAICT, vol. 436, pp. 364–374. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44654-6_36

    Google Scholar 

  25. Mousas, C., Newbury, P., Anagnostopoulos, C.-N.: Efficient hand-over motion reconstruction. In: International Conference on Computer Graphics, Visualization and Computer Vision, pp. 111–120 (2014)

    Google Scholar 

  26. Hsu, E., Pulli, K., Popović, J.: Style translation for human motion. ACM Trans. Graph. 24(3), 1082–1089 (2005)

    Article  Google Scholar 

  27. Grochow, K., Martin, S.L., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. ACM Trans. Graph. 23(3), 522–531 (2004)

    Article  Google Scholar 

  28. Wang, J.M., Fleet, D.J., Hertzmann, A.: Multifactor Gaussian process models for style-content separation. In: International Conference on Machine learning, pp. 975–982 (2007)

    Google Scholar 

  29. Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions in large data sets. ACM Trans. Graph. 23(3), 559–568 (2004)

    Article  Google Scholar 

  30. Unuma, M., Anjyo, K., Takeuchi, R.: Fourier principles for emotion-based human figure animation. In: Annual Conference on Computer Graphics and Interactive Techniques, pp. 91–96 (1995)

    Google Scholar 

  31. Bruderlin, A., Williams, L.: Motion signal processing. In: Annual Conference on Computer Graphics and Interactive Techniques, pp. 97–104 (1995)

    Google Scholar 

  32. Perlin, K.: Real time responsive animation with personality. IEEE Trans. Vis. Comput. Graph. 1(1), 5–15 (1995)

    Article  Google Scholar 

  33. Evans, L.C.: Partial differential equations and monge-kantorovich mass transfer. In: Current Developments in Mathematics, pp. 65–126 (1999)

    Google Scholar 

  34. Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Mathe. 177(2), 113–161 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Villani, C.: Topics in Optimal Transportation, vol. 58. American Mathematical Society (2003)

    Google Scholar 

  36. Konstantinides, K., Yao, K.: Statistical analysis of effective singular values in matrix rank determinatio. IEEE Trans. Acoust. Speech Sig. Process. 36(5), 757–763 (1988)

    Article  MATH  Google Scholar 

  37. Lee, L.: Gait analysis for classification. Ph.d. thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (2002)

    Google Scholar 

  38. Carnegie Mellon University, Motion capture database. http://mocap.cs.cmu.edu/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Mousas .

Editor information

Editors and Affiliations

Appendix

Appendix

Here the definition of the components used in Eq. 2 is presented. Specifically, the matrices of \(T_{ref}\), \(T_{in}\), \(R_{ref}\), \(R_{in}\), \(S_{ref}\), and \(S_{in}\) denote the translation, rotation and scaling derived from the reference style and the input motion respectively. They are solved as:

$$\begin{aligned} T_{ref} = \begin{bmatrix} 1&0&0&\bar{X}_{ref} \\ 0&1&0&\bar{Y}_{ref} \\ 0&0&1&\bar{Z}_{ref} \\ 0&0&0&1 \end{bmatrix} \end{aligned}$$
(3)
$$\begin{aligned} T_{in} = \begin{bmatrix} 1&0&0&-\bar{X}_{in} \\ 0&1&0&-\bar{Y}_{in} \\ 0&0&1&-\bar{Z}_{in} \\ 0&0&0&1 \end{bmatrix} \end{aligned}$$
(4)
$$\begin{aligned} S_{ref} = \begin{bmatrix} \bar{\lambda }^X_{ref}&0&0&0 \\ 0&\bar{\lambda }^Y_{ref}&0&0 \\ 0&0&\bar{\lambda }^Z_{ref}&0 \\ 0&0&0&1 \end{bmatrix} \end{aligned}$$
(5)
$$\begin{aligned} S_{in} = \begin{bmatrix} 1/\sqrt{\bar{\lambda }^X_{in}}&0&0&0 \\ 0&1/\sqrt{\bar{\lambda }^Y_{in}}&0&0 \\ 0&0&1/\sqrt{\bar{\lambda }^Z_{in}}&0 \\ 0&0&0&1 \end{bmatrix} \end{aligned}$$
(6)
$$\begin{aligned} R_{ref}=U_{ref} \end{aligned}$$
(7)
$$\begin{aligned} R_{in}=U_{in}^{-1} \end{aligned}$$
(8)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kilias, A., Mousas, C. (2017). Motion Style Transfer in Correlated Motion Spaces. In: De Paolis, L., Bourdot, P., Mongelli, A. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2017. Lecture Notes in Computer Science(), vol 10324. Springer, Cham. https://doi.org/10.1007/978-3-319-60922-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60922-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60921-8

  • Online ISBN: 978-3-319-60922-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics