Skip to main content

Switches in Dicer Activity During Oogenesis and Early Development

  • Chapter
  • First Online:
Oocytes

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 63))

Abstract

Dicer is a versatile protein regulating diverse biological processes via the production of multiple classes of small regulatory RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs). In this chapter, we will discuss roles for Dicer in driving temporal changes in activity of individual small RNA classes to support oogenesis and early embryogenesis. Genetic strategies that perturb particular functions of Dicer family proteins, such as ablation of individual Dicer paralogs or their binding partners as well as introduction of point mutations to individual domains, allowed the dissection of Dicer functions in diverse small RNA pathways. Evolutionary conservation and divergence of the mechanisms highlight the importance of Dicer versatility in supporting rapid changes in gene expression during oogenesis and early development. Furthermore, we will discuss potential roles of Dicer in transgenerational inheritance of small RNA-mediated gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Naqvi A, Hendriks GJ, Feltzin V, Zhu Y, Grigoriev A, Bonini NM (2014) Impact of age-associated increase in 2′-O-methylation of miRNAs on aging and neurodegeneration in Drosophila. Genes Dev 28(1):44–57. doi:10.1101/gad.226654.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcazar RM, Lin R, Fire AZ (2008) Transmission dynamics of heritable silencing induced by double-stranded RNA in Caenorhabditis elegans. Genetics 180(3):1275–1288. doi:10.1534/genetics.108.089433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki K, Moriguchi H, Yoshioka T, Okawa K, Tabara H (2007) In vitro analyses of the production and activity of secondary small interfering RNAs in C. elegans. Embo J 26(24):5007–5019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armisen J, Gilchrist MJ, Wilczynska A, Standart N, Miska EA (2009) Abundant and dynamically expressed miRNAs, piRNAs, and other small RNAs in the vertebrate Xenopus tropicalis. Genome Res 19(10):1766–1775. doi:10.1101/gr.093054.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzam G, Smibert P, Lai EC, Liu JL (2012) Drosophila Argonaute 1 and its miRNA biogenesis partners are required for oocyte formation and germline cell division. Dev Biol 365(2):384–394. doi:10.1016/j.ydbio.2012.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22(20):2773–2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bejarano F, Smibert P, Lai EC (2010) miR-9a prevents apoptosis during wing development by repressing Drosophila LIM-only. Dev Biol 338(1):63–73. doi:10.1016/j.ydbio.2009.11.025

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy A, Hammond S, Hannon G (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35(3):215–217

    Article  CAS  PubMed  Google Scholar 

  • Billi AC, Fischer SE, Kim JK (2014) Endogenous RNAi pathways in C. elegans. WormBook:1–49. doi:10.1895/wormbook.1.170.1

  • Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322(5906):1387–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley BA, Burkhart KB, SG G, Spracklin G, Kershner A, Fritz H, Kimble J, Fire A, Kennedy S (2012) A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 489(7416):447–451. doi:10.1038/nature11352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushati N, Stark A, Brennecke J, Cohen SM (2008) Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila. Curr Biol 18:501–506. doi:10.1016/j.cub.2008.02.081

    Article  CAS  PubMed  Google Scholar 

  • Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD, Meissner A, Weng Z, Hofmann HA, Friedman N, Rando OJ (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143(7):1084–1096. doi:10.1016/j.cell.2010.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157(1):77–94. doi:10.1016/j.cell.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  • Chen PY, Manninga H, Slanchev K, Chien M, Russo JJ, Ju J, Sheridan R, John B, Marks DS, Gaidatzis D, Sander C, Zavolan M, Tuschl T (2005) The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev 19(11):1288–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng GH, Peng H, Zhang X, Zhang Y, Qian J, Duan E, Zhai Q, Zhou Q (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351(6271):397–400. doi:10.1126/science.aad7977

    Article  CAS  PubMed  Google Scholar 

  • Choi WY, Giraldez AJ, Schier AF (2007) Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318(5848):271–274

    Article  CAS  PubMed  Google Scholar 

  • Cole C, Sobala A, Lu C, Thatcher SR, Bowman A, Brown JW, Green PJ, Barton GJ, Hutvagner G (2009) Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15(12):2147–2160. doi:10.1261/rna.1738409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colmenares SU, Buker SM, Buhler M, Dlakic M, Moazed D (2007) Coupling of double-stranded RNA synthesis and siRNA generation in fission yeast RNAi. Mol Cell 27(3):449–461

    Article  CAS  PubMed  Google Scholar 

  • Dang DT, Perrimon N (1992) Use of a yeast site-specific recombinase to generate embryonic mosaics in Drosophila. Dev Genet 13(5):367–375

    Article  CAS  PubMed  Google Scholar 

  • Deddouche S, Matt N, Budd A, Mueller S, Kemp C, Galiana-Arnoux D, Dostert C, Antoniewski C, Hoffmann JA, Imler JL (2008) The DExD/H-box helicase Dicer-2 mediates the induction of antiviral activity in drosophila. Nat Immunol 9(12):1425–1432

    Article  CAS  PubMed  Google Scholar 

  • Devanapally S, Ravikumar S, Jose AM (2015) Double-stranded RNA made in C. elegans neurons can enter the germline and cause transgenerational gene silencing. Proc Natl Acad Sci USA 112(7):2133–2138. doi:10.1073/pnas.1423333112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drake M, Furuta T, Suen KM, Gonzalez G, Liu B, Kalia A, Ladbury JE, Fire AZ, Skeath JB, Arur S (2014) A requirement for ERK-dependent Dicer phosphorylation in coordinating oocyte-to-embryo transition in C. elegans. Dev Cell 31(5):614–628. doi:10.1016/j.devcel.2014.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felix MA, Ashe A, Piffaretti J, Wu G, Nuez I, Belicard T, Jiang Y, Zhao G, Franz CJ, Goldstein LD, Sanroman M, Miska EA, Wang D (2011) Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol 9(1):e1000586. doi:10.1371/journal.pbio.1000586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

    Article  CAS  PubMed  Google Scholar 

  • Flemr M, Malik R, Franke V, Nejepinska J, Sedlacek R, Vlahovicek K, Svoboda P (2013) A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell 155(4):807–816. doi:10.1016/j.cell.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  • Forstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klattenhoff C, Theurkauf WE, Zamore PD (2005) Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 3(7):e236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forstemann K, Horwich MD, Wee L, Tomari Y, Zamore PD (2007) Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell 130(2):287–297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukunaga R, Han BW, Hung JH, Xu J, Weng Z, Zamore PD (2012) Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell 151(3):533–546. doi:10.1016/j.cell.2012.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, Farinelli L, Miska E, Mansuy IM (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17(5):667–669. doi:10.1038/nn.3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasciolli V, Mallory AC, Bartel DP, Vaucheret H (2005) Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15(16):1494–1500. doi:10.1016/j.cub.2005.07.024

    Article  CAS  PubMed  Google Scholar 

  • Grishok A, Tabara H, Mello CC (2000) Genetic requirements for inheritance of RNAi in C. elegans. Science 287(5462):2494–2497

    Article  CAS  PubMed  Google Scholar 

  • Grishok A, Pasquinelli A, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34

    Article  CAS  PubMed  Google Scholar 

  • Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524. doi:10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  • Han T, Manoharan AP, Harkins TT, Bouffard P, Fitzpatrick C, Chu DS, Thierry-Mieg D, Thierry-Mieg J, Kim JK (2009) 26G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad Sci USA 106(44):18674–18679. doi:10.1073/pnas.0906378106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartig JV, Esslinger S, Bottcher R, Saito K, Forstemann K (2009) Endo-siRNAs depend on a new isoform of loquacious and target artificially introduced, high-copy sequences. Embo J

    Google Scholar 

  • Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H (2005) Stem cell division is regulated by the microRNA pathway. Nature 435(7044):974–978

    Article  CAS  PubMed  Google Scholar 

  • Henderson IR, Zhang X, Lu C, Johnson L, Meyers BC, Green PJ, Jacobsen SE (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38(6):721–725

    Article  CAS  PubMed  Google Scholar 

  • Hirano T, Iwasaki YW, Lin ZY, Imamura M, Seki NM, Sasaki E, Saito K, Okano H, Siomi MC, Siomi H (2014) Small RNA profiling and characterization of piRNA clusters in the adult testes of the common marmoset, a model primate. RNA 20(8):1223–1237. doi:10.1261/rna.045310.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houri-Ze’evi L, Korem Y, Sheftel H, Faigenbloom L, Toker IA, Dagan Y, Awad L, Degani L, Alon U, Rechavi O (2016) A tunable mechanism determines the duration of the transgenerational small RNA inheritance in C. elegans. Cell 165(1):88–99. doi:10.1016/j.cell.2016.02.057

    Article  PubMed  CAS  Google Scholar 

  • Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E, Moens CB, Plasterk RH, Hannon GJ, Draper BW, Ketting RF (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129(1):69–82

    Article  CAS  PubMed  Google Scholar 

  • Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9(1):22–32. doi:10.1038/nrm2321

    Article  CAS  PubMed  Google Scholar 

  • Iovino N, Pane A, Gaul U (2009) miR-184 has multiple roles in Drosophila female germline development. Dev Cell 17(1):123–133. doi:10.1016/j.devcel.2009.06.008

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Ye X, Liu X, Fincher L, McKearin D, Liu Q (2005) Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev 19:1674–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Z, Xie T (2007) Dcr-1 maintains Drosophila ovarian stem cells. Curr Biol 17(6):539–544. doi:10.1016/j.cub.2007.01.050

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kaneda M, Tang F, O’Carroll D, Lao K, Surani MA (2009) Essential role for Argonaute2 protein in mouse oogenesis. Epigenetics Chromatin 2(1):9. doi:10.1186/1756-8935-2-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaneko H, Dridi S, Tarallo V, Gelfand BD, Fowler BJ, Cho WG, Kleinman ME, Ponicsan SL, Hauswirth WW, Chiodo VA, Kariko K, Yoo JW, Lee DK, Hadziahmetovic M, Song Y, Misra S, Chaudhuri G, Buaas FW, Braun RE, Hinton DR, Zhang Q, Grossniklaus HE, Provis JM, Madigan MC, Milam AH, Justice NL, Albuquerque RJ, Blandford AD, Bogdanovich S, Hirano Y, Witta J, Fuchs E, Littman DR, Ambati BK, Rudin CM, Chong MM, Provost P, Kugel JF, Goodrich JA, Dunaief JL, Baffi JZ, Ambati J (2011) DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471(7338):325–330. doi:10.1038/nature09830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ketting R, Fischer S, Bernstein E, Sijen T, Hannon G, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNAs involved in developmental timing in C. elegans. Genes Dev 15:2654–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139

    Article  CAS  PubMed  Google Scholar 

  • Kloc M, Kubiak JZ (2017) Exogenous molecules and organelles delivery in oogenesis results and problems in cell differentiation. In: Kloc M (ed) Oocytes: maternal information and functions. Springer, Cham

    Chapter  Google Scholar 

  • Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5(8):e203. doi:10.1371/journal.pbio.0050203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knight S, Bass BL (2001) A role for the RNAse III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293:2269–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kugler JM, Lasko P (2009) Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly (Austin) 3(1):15–28

    Article  CAS  Google Scholar 

  • Kugler JM, Chen YW, Weng R, Cohen SM (2013) Maternal loss of miRNAs leads to increased variance in primordial germ cell numbers in Drosophila melanogaster. G3 3(9):1573–1576. doi:10.1534/g3.113.007591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101(34):12753–12758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurzynska-Kokorniak A, Koralewska N, Pokornowska M, Urbanowicz A, Tworak A, Mickiewicz A, Figlerowicz M (2015) The many faces of Dicer: the complexity of the mechanisms regulating Dicer gene expression and enzyme activities. Nucleic Acids Res 43(9):4365–4380. doi:10.1093/nar/gkv328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lappalainen T, Sammeth M, Friedlander MR, t Hoen PA, Monlong J, Rivas MA, Gonzalez-Porta M, Kurbatova N, Griebel T, Ferreira PG, Barann M, Wieland T, Greger L, van Iterson M, Almlof J, Ribeca P, Pulyakhina I, Esser D, Giger T, Tikhonov A, Sultan M, Bertier G, MacArthur DG, Lek M, Lizano E, Buermans HP, Padioleau I, Schwarzmayr T, Karlberg O, Ongen H, Kilpinen H, Beltran S, Gut M, Kahlem K, Amstislavskiy V, Stegle O, Pirinen M, Montgomery SB, Donnelly P, McCarthy MI, Flicek P, Strom TM, Geuvadis C, Lehrach H, Schreiber S, Sudbrak R, Carracedo A, Antonarakis SE, Hasler R, Syvanen AC, van Ommen GJ, Brazma A, Meitinger T, Rosenstiel P, Guigo R, Gut IG, Estivill X, Dermitzakis ET (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501(7468):506–511. doi:10.1038/nature12531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasko P (2011) Posttranscriptional regulation in Drosophila oocytes and early embryos. Wiley Interdiscip Rev RNA 2(3):408–416. doi:10.1002/wrna.70

    Article  CAS  PubMed  Google Scholar 

  • Lau PW, Guiley KZ, De N, Potter CS, Carragher B, MacRae IJ (2012) The molecular architecture of human Dicer. Nat Struct Mol Biol 19(4):436–440. doi:10.1038/nsmb.2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117(1):69–81

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Choi Y, Kim K, Jin H, Lim J, Nguyen TA, Yang J, Jeong M, Giraldez AJ, Yang H, Patel DJ, Kim VN (2014) Adenylation of maternally inherited microRNAs by wispy. Mol Cell 56(5):696–707. doi:10.1016/j.molcel.2014.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Cassidy JJ, Reinke CA, Fischboeck S, Carthew RW (2009) A microRNA imparts robustness against environmental fluctuation during development. Cell 137(2):273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim MY, Ng AW, Chou Y, Lim TP, Simcox A, Tucker-Kellogg G, Okamura K (2016) The Drosophila Dicer-1 partner loquacious enhances miRNA processing from hairpins with unstable structures at the dicing site. Cell Rep. doi:10.1016/j.celrep.2016.04.059

  • Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Park JK, Jiang F, Liu Y, McKearin D, Liu Q (2007) Dicer-1, but not Loquacious, is critical for assembly of miRNA-induced silencing complexes. RNA 13(12):2324–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14(7):1605–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Flemr M, Stein P, Berninger P, Malik R, Zavolan M, Svoboda P, Schultz RM (2010) MicroRNA activity is suppressed in mouse oocytes. Curr Biol 20(3):265–270. doi:10.1016/j.cub.2009.12.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacRae IJ, Doudna JA (2007) Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 17(1):138–145. doi:10.1016/j.sbi.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  • Macrae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA (2006) Structural basis for double-stranded RNA processing by Dicer. Science 311(5758):195–198. doi:10.1126/science.1121638

    Article  CAS  PubMed  Google Scholar 

  • MacRae IJ, Zhou K, Doudna JA (2007) Structural determinants of RNA recognition and cleavage by Dicer. Nat Struct Mol Biol 14(10):934–940. doi:10.1038/nsmb1293

    Article  CAS  PubMed  Google Scholar 

  • Marco A (2015) Selection against maternal microRNA target sites in maternal transcripts. G3 5(10):2199–2207. doi:10.1534/g3.115.019497

    Article  PubMed  PubMed Central  Google Scholar 

  • Marre J, Traver EC, Jose AM (2016) Extracellular RNA is transported from one generation to the next in Caenorhabditis elegans. Proc Natl Acad Sci USA 113(44):12496–12501. doi:10.1073/pnas.1608959113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14(7):447–459. doi:10.1038/nrg3462

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC (2005) Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev 19(23):2837–2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyoshi K, Miyoshi T, Hartig JV, Siomi H, Siomi MC (2010) Molecular mechanisms that funnel RNA precursors into endogenous small-interfering RNA and microRNA biogenesis pathways in Drosophila. RNA. doi:10.1261/rna.1952110

  • Morita S, Horii T, Kimura M, Goto Y, Ochiya T, Hatada I (2007) One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics 89(6):687–696. doi:10.1016/j.ygeno.2007.01.004

    Article  CAS  PubMed  Google Scholar 

  • Morrison DK (2012) MAP kinase pathways. Cold Spring Harb Perspect Biol 4(11). doi:10.1101/cshperspect.a011254

  • Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ (2007) Critical roles for Dicer in the female germline. Genes Dev 21(6):682–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa A, Shi Y, Kage-Nakadai E, Mitani S, Xue D (2010) Caspase-dependent conversion of Dicer ribonuclease into a death-promoting deoxyribonuclease. Science 328(5976):327–334. doi:10.1126/science.1182374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ (2010) Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467(7318):963–966. doi:10.1038/nature09491

    Article  CAS  PubMed  Google Scholar 

  • Oh D, Houston DW (2017) RNA localization in the vertebrate oocyte: establishment of oocyte polarity and localized mRNA assemblages. In: Kloc M (ed) Oocytes: maternal information and functions, Results and problems in cell differentiation. Springer, Cham

    Google Scholar 

  • Ohnishi Y, Totoki Y, Toyoda A, Watanabe T, Yamamoto Y, Tokunaga K, Sakaki Y, Sasaki H, Hohjoh H (2010) Small RNA class transition from siRNA/piRNA to miRNA during pre-implantation mouse development. Nucleic Acids Res 38(15):5141–5151. doi:10.1093/nar/gkq229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamura K, Lai EC (2008) Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol 9(9):673–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JK, Liu X, Strauss TJ, McKearin DM, Liu Q (2007) The miRNA pathway intrinsically controls self-renewal of drosophila germline stem cells. Curr Biol 17(6):533–538

    Article  CAS  PubMed  Google Scholar 

  • Park JE, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, Kim VN (2011) Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475(7355):201–205. doi:10.1038/nature10198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rechavi O, Minevich G, Hobert O (2011) Transgenerational inheritance of an acquired small RNA-based antiviral response in C. elegans. Cell 147(6):1248–1256. doi:10.1016/j.cell.2011.10.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rechavi O, Houri-Ze'evi L, Anava S, Goh WS, Kerk SY, Hannon GJ, Hobert O (2014) Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158(2):277–287. doi:10.1016/j.cell.2014.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhart BJ, Slack F, Basson M, Pasquinelli A, Bettinger J, Rougvie A, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz D, Rudloff S, Bastuck K, Ketting RF, Zischler H (2015) Tupaia small RNAs provide insights into function and evolution of RNAi-based transposon defense in mammals. RNA 21(5):911–922. doi:10.1261/rna.048603.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127(6):1193–1207

    Article  CAS  PubMed  Google Scholar 

  • Rybak-Wolf A, Jens M, Murakawa Y, Herzog M, Landthaler M, Rajewsky N (2014) A variety of dicer substrates in human and C. elegans. Cell 159(5):1153–1167. doi:10.1016/j.cell.2014.10.040

    Article  CAS  PubMed  Google Scholar 

  • Sawh AN, Duchaine TF (2013) A truncated form of dicer tilts the balance of RNA interference pathways. Cell Rep 4(3):454–463. doi:10.1016/j.celrep.2013.07.013

    Article  CAS  PubMed  Google Scholar 

  • Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F, Song L, Carone BR, Ricci EP, Li XZ, Fauquier L, Moore MJ, Sullivan R, Mello CC, Garber M, Rando OJ (2016) Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351(6271):391–396. doi:10.1126/science.aad6780

    Article  CAS  PubMed  Google Scholar 

  • Shcherbata HR, Ward EJ, Fischer KA, JY Y, Reynolds SH, Chen CH, Xu P, Hay BA, Ruohola-Baker H (2007) Stage-specific differences in the requirements for germline stem cell maintenance in the Drosophila ovary. Cell Stem Cell 1(6):698–709. doi:10.1016/j.stem.2007.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sijen T, Steiner FA, Thijssen KL, Plasterk RH (2007) Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 315(5809):244–247

    Article  CAS  PubMed  Google Scholar 

  • Song R, Hennig GW, Wu Q, Jose C, Zheng H, Yan W (2011) Male germ cells express abundant endogenous siRNAs. Proc Natl Acad Sci USA 108(32):13159–13164. doi:10.1073/pnas.1108567108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soni K, Choudhary A, Patowary A, Singh AR, Bhatia S, Sivasubbu S, Chandrasekaran S, Pillai B (2013) miR-34 is maternally inherited in Drosophila melanogaster and Danio rerio. Nucleic Acids Res 41(8):4470–4480. doi:10.1093/nar/gkt139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein P, Rozhkov NV, Li F, Cardenas FL, Davydenko O, Vandivier LE, Gregory BD, Hannon GJ, Schultz RM (2015) Essential Role for endogenous siRNAs during meiosis in mouse oocytes. PLoS Genet 11(2):e1005013. doi:10.1371/journal.pgen.1005013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suh N, Baehner L, Moltzahn F, Melton C, Shenoy A, Chen J, Blelloch R (2010) MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol 20(3):271–277. doi:10.1016/j.cub.2009.12.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svoboda P (2010) Why mouse oocytes and early embryos ignore miRNAs? RNA Biol 7(5):559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadros W, Lipshitz HD (2009) The maternal-to-zygotic transition: a play in two acts. Development 136(18):3033–3042. doi:10.1242/dev.033183

    Article  CAS  PubMed  Google Scholar 

  • Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz RM, Hannon GJ (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453:534–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang F, Kaneda M, O'Carroll D, Hajkova P, Barton SC, Sun YA, Lee C, Tarakhovsky A, Lao K, Surani MA (2007) Maternal microRNAs are essential for mouse zygotic development. Genes Dev 21(6):644–648. doi:10.1101/gad.418707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thivierge C, Makil N, Flamand M, Vasale JJ, Mello CC, Wohlschlegel J, Conte D Jr, Duchaine TF (2011) Tudor domain ERI-5 tethers an RNA-dependent RNA polymerase to DCR-1 to potentiate endo-RNAi. Nat Struct Mol Biol 19(1):90–97. doi:10.1038/nsmb.2186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toledano H, D’Alterio C, Czech B, Levine E, Jones DL (2012) The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature 485(7400):605–610. doi:10.1038/nature11061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsumi A, Kawamata T, Izumi N, Seitz H, Tomari Y (2011) Recognition of the pre-miRNA structure by Drosophila Dicer-1. Nat Struct Mol Biol 18(10):1153–1158. doi:10.1038/nsmb.2125

    Article  CAS  PubMed  Google Scholar 

  • Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313(5785):320–324

    Article  CAS  PubMed  Google Scholar 

  • Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20(5):515–524

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39(3):380–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Wu D, Liu Y, Xia X, Gong W, Qiu Y, Yang J, Zheng Y, Li J, Wang YF, Xiang Y, Hu Y, Zhou X (2015) Drosophila Dicer-2 has an RNA interference-independent function that modulates Toll immune signaling. Sci Adv 1(9):e1500228. doi:10.1126/sciadv.1500228

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Takeda A, Mise K, Okuno T, Suzuki T, Minami N, Imai H (2005) Stage-specific expression of microRNAs during Xenopus development. FEBS Lett 579(2):318–324

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T, Nakano T, Surani MA, Sakaki Y, Sasaki H (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543

    Article  CAS  PubMed  Google Scholar 

  • Welker NC, Pavelec DM, Nix DA, Duchaine TF, Kennedy S, Bass BL (2010) Dicer’s helicase domain is required for accumulation of some, but not all, C. elegans endogenous siRNAs. RNA 16(5):893–903. doi:10.1261/rna.2122010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welker NC, Maity TS, Ye X, Aruscavage PJ, Krauchuk AA, Liu Q, Bass BL (2011) Dicer’s helicase domain discriminates dsRNA termini to promote an altered reaction mode. Mol Cell 41(5):589–599. doi:10.1016/j.molcel.2011.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White E, Schlackow M, Kamieniarz-Gdula K, Proudfoot NJ, Gullerova M (2014) Human nuclear Dicer restricts the deleterious accumulation of endogenous double-stranded RNA. Nat Struct Mol Biol 21(6):552–559. doi:10.1038/nsmb.2827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Xu S, Xia L, Wang J, Wen S, Jin P, Chen D (2009) The bantam microRNA is associated with drosophila fragile X mental retardation protein and regulates the fate of germline stem cells. PLoS Genet 5(4):e1000444. doi:10.1371/journal.pgen.1000444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang JS, Smibert P, Westholm JO, Jee D, Maurin T, Lai EC (2014) Intertwined pathways for Argonaute-mediated microRNA biogenesis in Drosophila. Nucleic Acids Res 42(3):1987–2002. doi:10.1093/nar/gkt1038

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Lin J, Liu M, Li R, Tian B, Zhang X, Xu B, Liu M, Zhang X, Li Y, Shi H, Wu L (2016) Highly sensitive sequencing reveals dynamic modifications and activities of small RNAs in mouse oocytes and early embryos. Sci Adv 2(6):e1501482. doi:10.1126/sciadv.1501482

    Article  PubMed  PubMed Central  Google Scholar 

  • Yigit E, Batista PJ, Bei Y, Pang KM, Chen CC, Tolia NH, Joshua-Tor L, Mitani S, Simard MJ, Mello CC (2006) Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127(4):747–757

    Article  CAS  PubMed  Google Scholar 

  • Yu JY, Reynolds SH, Hatfield SD, Shcherbata HR, Fischer KA, Ward EJ, Long D, Ding Y, Ruohola-Baker H (2009) Dicer-1-dependent Dacapo suppression acts downstream of Insulin receptor in regulating cell division of Drosophila germline stem cells. Development 136(9):1497–1507. doi:10.1242/dev.025999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan S, Ortogero N, Wu Q, Zheng H, Yan W (2014) Murine follicular development requires oocyte DICER, but not DROSHA. Biol Reprod 91(2):39. doi:10.1095/biolreprod.114.119370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118(1):57–68

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhao B, Roy S, Saha TT, Kokoza VA, Li M, Raikhel AS (2016) microRNA-309 targets the Homeobox gene SIX4 and controls ovarian development in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 113(33):E4828–E4836. doi:10.1073/pnas.1609792113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou R, Czech B, Brennecke J, Sachidanandam R, Wohlschlegel JA, Perrimon N, Hannon GJ (2009) Processing of Drosophila endo-siRNAs depends on a specific Loquacious isoform. RNA 15(10):1886–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in K.O.’s group was supported by the National Research Foundation, Prime Minister’s Office, Singapore, under its NRF Fellowship Programme (NRF2011NRF-NRFF001-042). The authors thank Dr. Yu Cai for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsutomo Okamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lim, M.Y.T., Okamura, K. (2017). Switches in Dicer Activity During Oogenesis and Early Development. In: Kloc, M. (eds) Oocytes. Results and Problems in Cell Differentiation, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-60855-6_14

Download citation

Publish with us

Policies and ethics