Skip to main content

Synthesis, Characterization and Models of Graphene Oxide

  • Chapter
  • First Online:
Graphene Oxide in Environmental Remediation Process

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

The chapter gives an overview of the most important synthetic methods to produce graphene oxide via wet chemistry. Brodie-Staudenmaier-Hummers and free-water based approaches are reported and where it is considered the influence of synthesis on the graphene oxide structure. Physical chemical and morphological characterisations are described in the second part of the chapter. In the last section, details of theoretical calculation and modelling of graphene oxide structures are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboutalebi SH, Gudarzi MM, Zheng QB, Kim JK (2011) Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv Funct Mater 21(15):2978–2988

    Article  Google Scholar 

  2. Aunkor MTH, Mahbubul IM, Saidur R, Metselaar HSC (2015) Deoxygenation of graphene oxide using household baking soda as a reducing agent: a green approach. RSC Adv 5(86):70461–470472

    Google Scholar 

  3. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587

    Article  Google Scholar 

  4. Bosch-Navarro C, Busolo F, Coronado E, Duan Y, Martí-Gastaldo C, Prima-Garcia H (2013) Influence of the covalent grafting of organic radicals to graphene on its magnetoresistance. J Mater Chem C 1(30):4590–9

    Article  Google Scholar 

  5. Brodie BC (1859) On the atomic weight of graphite. Phil Trans R Soc Lond 149:249–259

    Article  Google Scholar 

  6. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112(11):6027–6053

    Article  Google Scholar 

  7. Chen J, Li Y, Huang L, Li C, Shi G (2015) High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 81:826–834

    Article  Google Scholar 

  8. Chen ZL, Kam FY, Goh RGS, Song J, Lim GK, Chua LL (2013) Influence of graphite source on chemical oxidative reactivity. Chem Mater 25(15):2944–2949

    Article  Google Scholar 

  9. Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43(1):291–312

    Article  Google Scholar 

  10. Chung MG, Kim DH, Lee HM, Kim T, Choi JH, Dk S, Yoo JB, Hong SH, Kang TJ, Kim YH (2012) Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens Actuators B Chem 166–167:172–176

    Article  Google Scholar 

  11. Dimiev AM, Tour JM (2014) Mechanism of graphene oxide formation. ACS Nano 8(3):3060–3068

    Article  Google Scholar 

  12. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  Google Scholar 

  13. Dreyer DR, Todd AD, Bielawski CW (2014) Harnessing the chemistry of graphene oxide. Chem Soc Rev 43(15):5288–5301

    Article  Google Scholar 

  14. Fonseca AF, Liang T, Zhang D, Choudhary K, Sinnott SB (2016) Probing the accuracy of reactive and non-reactive force fields to describe physical and chemical properties of graphene-oxide. Comput Mater Sci 114:236–243

    Article  Google Scholar 

  15. Froning JP, Lazar P, Pykal M, Li Q, Dong M, Zboril R, Otyepka M (2017) Direct mapping of chemical oxidation of individual graphene sheets through dynamic force measurements at the nanoscale. Nanoscale 9(1):119–127

    Article  Google Scholar 

  16. Gao W (2015) Graphene oxide: reduction recipes, spectroscopy, and applications. Springer: New York

    Google Scholar 

  17. Georgakilas V (2014) Functionalization of graphene. Wiley, New York

    Google Scholar 

  18. Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7(11):3394–3398

    Article  Google Scholar 

  19. Guerrero-Contreras J, Caballero-Briones F (2015) Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater Chem Phys 153:209–220

    Article  Google Scholar 

  20. Hong Y, Wang Z, Jin X (2013) Sulfuric acid intercalated graphite oxide for graphene preparation. Sci Rep 3:132

    Google Scholar 

  21. Hossain MZ, Johns JE, Bevan KH, Karmel HJ, Liang YT, Yoshimoto S, Mukai K, Koitaya T, Yoshinobu J, Kawai M, Lear AM, Kesmodel LL, Tait SL, Hersam MC (2012) Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nat Chem 4(4):305–309

    Article  Google Scholar 

  22. Huh S, Park J, Kim YS, Kim KS, Hong BH, Nam JM (2011) UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering. ACS Nano 5(12):9799–9806

    Article  Google Scholar 

  23. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  Google Scholar 

  24. Jalili R, Aboutalebi SH, Esrafilzadeh D, Konstantinov K, Moulton SE, Razal JM, Wallace GG (2013) Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures. ACS Nano 7(5):3981–3990

    Article  Google Scholar 

  25. Jung I, Field DA, Clark NJ, Zhu Y, Yang D, Piner RD, Stankovich S, Dikin DA, Geisler H, Ventrice Jr CA, Ruoff RS (2009) Reduction kinetics of graphene oxide determined by electrical transport measurements and temperature programmed desorption. J Phys Chem C 113(43):18480–18486

    Google Scholar 

  26. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11(3):771–778

    Article  Google Scholar 

  27. Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53:38–49

    Article  Google Scholar 

  28. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41

    Article  Google Scholar 

  29. Lai Q, Zhu S, Luo X, Zou M, Huang S (2012) Ultraviolet-visible spectroscopy of graphene oxides. AIP Adv 2(3):032146

    Google Scholar 

  30. Ma HL, Zhang HB, Hu QH, Li WJ, Jiang ZG, Yu ZZ, Dasari A (2012) Functionalization and reduction of graphene oxide with p-phenylene diamine for electrically conductive and thermally stable polystyrene composites. ACS Appl Mater Interfaces 4(4):1948–1953

    Article  Google Scholar 

  31. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  Google Scholar 

  32. Paci JT, Belytschko T, Schatz GC (2007) Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. J Phys Chem C 111(49):18099–18111

    Google Scholar 

  33. Pendolino F, Capurso G, Maddalena A, Lo Russo S (2014a) The structural change of graphene oxide in a methanol dispersion. RSC Adv 4(62):32,914

    Google Scholar 

  34. Pendolino F, Parisini E, Lo Russo S (2014b) Time-dependent structure and solubilization kinetics of graphene oxide in methanol and water dispersions. J Phys Chem C 118(48):28162–28169

    Google Scholar 

  35. Pendolino F, Armata N, Masullo T, Cuttitta A (2015) Temperature influence on the synthesis of pristine graphene oxide and graphite oxide. Mater Chem Phys 164:71–77

    Article  Google Scholar 

  36. Peng L, Xu Z, Liu Z, Wei Y, Sun H, Li Z, Zhao X, Gao C (2015) An iron-based green approach to 1-h production of single-layer graphene oxide. Nat Comms 6:5716

    Article  Google Scholar 

  37. Qiu Y, Collin F, Hurt RH, Külaots I (2016) Thermochemistry and kinetics of graphite oxide exothermic decomposition for safety in large-scale storage and processing. Carbon 96:20–28

    Article  Google Scholar 

  38. Samarakoon DK, Wang XQ (2011) Twist-boat conformation in graphene oxides. Nanoscale 3(1):192–195

    Article  Google Scholar 

  39. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem 110(17):8535–8539

    Article  Google Scholar 

  40. Scholz W, Boehm HP (1969) Untersuchungen am Graphitoxid. VI. Betrachtungen zur Struktur des Graphitoxids. Z Anorg Allg Chem 369(3–6):327–340

    Google Scholar 

  41. Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY, Lee YH (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19(12):1987–1992

    Article  Google Scholar 

  42. Sk MA, Huang L, Chen P, Lim KH (2016) Controlling armchair and zigzag edges in oxidative cutting of graphene. J Mater Chem C 4(27):6539–6545

    Article  Google Scholar 

  43. Stankovich S, Da D, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  Google Scholar 

  44. Starodub E, Bartelt NC, McCarty KF (2010) Oxidation of graphene on metals. J Phys Chem C 114(11):5134–5140

    Article  Google Scholar 

  45. Staudenmaier L (1898) Verfahren zur Darstellung der Graphitsäure. Ber Dtsch Chem Ges 31(2):1481–1487

    Article  Google Scholar 

  46. Sun L, Fugetsu B (2013) Mass production of graphene oxide from expanded graphite. Mater Lett 109:207–210

    Article  Google Scholar 

  47. Vinogradov NA, Schulte K, Ng ML, Mikkelsen A, Lundgren E, Mårtensson N, Preobrajenski AB (2011) Impact of atomic oxygen on the structure of graphene formed on Ir(111) and Pt(111). J Phys Chem C 115(19):9568–9577

    Article  Google Scholar 

  48. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22):8192–8195

    Article  Google Scholar 

  49. Yamamoto M, Einstein TL, Fuhrer MS, Cullen WG (2012) Charge inhomogeneity determines oxidative reactivity of graphene on substrates. ACS Nano

    Google Scholar 

  50. Yang H, Li H, Zhai J, Sun L, Yu H (2014) Simple synthesis of graphene oxide using ultrasonic cleaner from expanded graphite. Ind Eng Chem Res 53(46):17878–17883

    Google Scholar 

  51. You S, Luzan SM, Szabó T, Talyzin AV (2013) Effect of synthesis method on solvation and exfoliation of graphite oxide. Carbon 52:171–180

    Article  Google Scholar 

  52. Zhang Y, Ma HL, Zhang Q, Peng J, Li J, Zhai M, Yu ZZ (2012) Facile synthesis of well-dispersed graphene by \(\gamma \)-ray induced reduction of graphene oxide. J Mater Chem 22(26):13064

    Google Scholar 

  53. Zhao J, Liu L, Li F (2015) Graphene oxide: physics and applications. Springer Briefs in Physics. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Pendolino .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Pendolino, F., Armata, N. (2017). Synthesis, Characterization and Models of Graphene Oxide. In: Graphene Oxide in Environmental Remediation Process. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-60429-9_2

Download citation

Publish with us

Policies and ethics