Skip to main content

Constructing Physically Consistent Subgrid-Scale Models for Large-Eddy Simulation of Incompressible Turbulent Flows

  • Conference paper
  • First Online:
  • 691 Accesses

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 135))

Abstract

We studied the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows, focusing on consistency with important mathematical and physical properties. In particular, we considered the symmetries of the Navier-Stokes equations, and the near-wall scaling and dissipation behavior of the turbulent stresses. After showing that existing models do not all satisfy the desired properties, we discussed a general class of subgrid-scale models based on the local filtered velocity gradient. We provided examples of models from this class that preserve several of the symmetries of the Navier-Stokes equations and exhibit the same near-wall scaling behavior as the turbulent stresses. Furthermore, these models are capable of describing nondissipative effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Carati D, Winckelmans G, Jeanmart H (2001) J Fluid Mech 441:119. doi:10.1017/S0022112001004773

    Article  Google Scholar 

  2. Chapman D, Kuhn G (1986) J Fluid Mech 170:265. doi:10.1017/S0022112086000885

    Article  Google Scholar 

  3. Clark R, Ferziger J, Reynolds WC (1979) J Fluid Mech 91:1. doi:10.1017/S002211207900001X

    Article  Google Scholar 

  4. Gatski T, Jongen T (2000) Progr Aerosp Sci 36:655. doi:10.1016/S0376-0421(00)00012-9

    Article  Google Scholar 

  5. Germano M, Piomelli U, Moin P, Cabot W (1991) Phys Fluids A-Fluid 3:1760. doi:10.1063/1.857955

    Article  Google Scholar 

  6. Lund T, Novikov E (1992) CTR Ann Res Briefs:27–43

    Google Scholar 

  7. Marstorp L, Brethouwer G, Grundestam O, Johansson A (2009) J Fluid Mech 639:403. doi:10.1017/S0022112009991054

    Article  Google Scholar 

  8. Nicoud F, Baya H, Toda, Cabrit O, Bose S, Lee J (2011) Phys Fluids 23:085106. doi:10.1063/1.3623274

  9. Nicoud F, Ducros F (1999) Flow Turbul Combust 62:183. doi:10.1023/A:1009995426001

    Article  Google Scholar 

  10. Oberlack M (1997) Annual research briefs. Stanford University/NASA Ames, Center for Turbulence Research, pp 3–22

    Google Scholar 

  11. Oberlack M (2002) Theories of turbulence. In: Oberlack M, Busse F (eds)International centre for mechanical sciences, vol 442. Springer Vienna, 2002, pp 301–366. doi:10.1007/978-3-7091-2564-9

  12. Pope S (1975) J Fluid Mech 72:331. doi:10.1017/S0022112075003382

    Article  Google Scholar 

  13. Pope S (2011) Turbulent Flows. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  14. Razafindralandy D, Hamdouni A, Oberlack M (2007) Eur J Mech B-Fluid 26:531. doi:10.1016/j.euromechflu.2006.10.003

    Article  Google Scholar 

  15. Sagaut P (2006) Large Eddy simulation for incompressible flows, 3rd edn. Scientific computation. Springer, Berlin. doi:10.1007/b137536

  16. Smagorinsky J (1963) Mon Weather Rev 91:99. doi:10.1175/1520-0493 091<0099:GCEWTP>2.3.CO;2

  17. Speziale C (1985) J Fluid Mech 156:55. doi:10.1017/S0022112085001987

    Article  Google Scholar 

  18. Trias FX, Folch D, Gorobets A, Oliva A (2015) Phys Fluids 27:065103. doi:10.1063/1.4921817

    Article  Google Scholar 

  19. Verstappen R, Rozema W, Bae H (2014) Proceedings of the summer program. Center for Turbulence Research, Stanford University/NASA Ames, pp 417–426

    Google Scholar 

  20. Vreman A (2004) Phys Fluids 16:3670. doi:10.1063/1.1785131

    Article  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge Professor Martin Oberlack for stimulating discussions during several stages of this project. Theodore Drivas and Perry Johnson are thankfully acknowledged for their valuable comments and criticisms on a preliminary version of this paper. Portions of this research have been presented at the 15th European Turbulence Conference, August 25–28th, 2015, Delft, The Netherlands. This work is part of the research programme Free Competition in the Physical Sciences with project number 613.001.212, which is financed by the Netherlands Organisation for Scientific Research (NWO). MHS gratefully acknowledges support from the Institute for Pure and Applied Mathematics (Los Angeles) for visits to the “Mathematics of Turbulence” program during the fall of 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurits H. Silvis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Silvis, M.H., Verstappen, R. (2018). Constructing Physically Consistent Subgrid-Scale Models for Large-Eddy Simulation of Incompressible Turbulent Flows. In: Deville, M., et al. Turbulence and Interactions. TI 2015. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-319-60387-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60387-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60386-5

  • Online ISBN: 978-3-319-60387-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics