Skip to main content

Performance of Predicting Surface Quality Model Using Softcomputing, a Comparative Study of Results

  • Conference paper
  • First Online:
Book cover Natural and Artificial Computation for Biomedicine and Neuroscience (IWINAC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10337))

Abstract

This paper describes a comparative study of performance of two models predicting surface quality in high-speed milling (HSM) processes using two different machining centers. The models were created with experimental data obtained from two machine-tools with different characteristics, but using the same experimental model. In both cases, work pieces (probes) of the same material were machined (steel and aluminum probes) with cutting parameters and characteristics proper of production processes in industries such as aeronautics and automotive. The main objective of this study was to compare surface quality prediction models created in two machining centers to establish differences in outcomes and the possible causes of these differences. In addition, this paper deals with the validation of each model concerning surface quality obtained, along with comparing the quality of the models with other predictive surface quality models based on similar techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, N., Janahiraman, T.V.: Modelling and prediction of surface roughness and power consumption using parallel extreme learning machine based particle swarm optimization. In: Cao, J., Mao, K., Cambria, E., Man, Z., Toh, K.-A. (eds.) Proceedings of ELM-2014 Volume 2. PALO, vol. 4, pp. 321–329. Springer, Cham (2015). doi:10.1007/978-3-319-14066-7_31

    Google Scholar 

  2. Altintas, Y., Weck, M.: Chatter stability of metal cutting and grinding. CIRP Ann. Manuf. Technol. 53, 40–51 (2004)

    Google Scholar 

  3. Badu, S., Vinayagam, B.: Surface roughness prediction model using adaptive particle swarm optimization (APSO) algorithm. Intell. Fuzzy Syst. 28, 345–360 (2015)

    Google Scholar 

  4. Benardos, P., Vosniakos, G.: Predicting surface roughness in machining: a review. Int. J. Mach. Tools Manuf. 43, 833–844 (2003)

    Article  Google Scholar 

  5. Correa, M., Bielza, C., Ramírez, M., Alique, J.R.: A Bayesian network model for surface roughness prediction in the machining process. Int. J. Syst. Sci. 39, 1181–1192 (2008)

    Article  MATH  Google Scholar 

  6. Correa, M., Bielza, C., Pamies-Teixeira, P.: Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Syst. Appl. 36(3), 7270–7279 (2009)

    Article  Google Scholar 

  7. D‘Mello, G., Pai, S.: Prediction of surface roughness in high speed machining: a comparison. Proc. Int. J. Res. Eng. Technol. 1, 519–525 (2014)

    Google Scholar 

  8. Ezugwua, E., Faderea, D., Onney, J., Bonney, J., Silva, R., Sales, W.: Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using artificial neural network. Int. J. Mach. Tools Manuf. 45, 1375–1385 (2005)

    Article  Google Scholar 

  9. Flores, V., Correa, M., Alique, J.R.: Modelo Pre-Proceso de predicción de la Calidad Superficial en Fresado a Alta Velocidad basado en Soft Computing. Revista Iberoamericana de Automática e Informática Industrial RIAI 8(1), 38–43 (2011)

    Article  Google Scholar 

  10. Friedman, N., Geiger, D., Goldszmit, M.: Bayesian network classifiers. Mach. Learn. 29, 131–161 (1997)

    Article  MATH  Google Scholar 

  11. Hao, W., Zhu, X., Li, X.: Prediction of cutting force for self-propelled rotary tool using artificial neural network. J. Mater. Process. Technol. 180, 23–29 (2006)

    Article  Google Scholar 

  12. Izamshah, R., Yuhazri, M., Hadzley, M., Amran, M.: Effects of end mill helix angle on accuracy for machining thin-rib aerospace component. Appl. Mech. Mater. 315, 773–777 (2013)

    Article  Google Scholar 

  13. Jiang, B., He, T., Gu, Y., et al.: Method for recognizing wave dynamics damage in high-speed milling cutter. Int. J. Adv. Manuf. Technol. (2017). doi:10.1007/s00170-017-0128-1

  14. Lela, B., Bajie, D., Jozié, S.: Regression analysis, support vector machines, and Bayesian neural network approaches to modelling surface roughness in face milling. Adv. Manuf. Technol. 42, 1082–1089 (2009)

    Article  Google Scholar 

  15. MacQueen, J.: Some methods for classification analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (2003)

    Google Scholar 

  16. Shang, S., Li, J.: Tool wear and cutting forces variation in high-speed end-milling Ti-6Al-4V alloy. Int. J. Adv. Manuf. Technol. 46, 69–78 (2010)

    Article  Google Scholar 

  17. Ozel, T., Esteves, A., Davim, J.: Neural network process modelling for turning of steel parts using conventional and wiper inserts. Int. J. Mater. Prod. Technol. 35, 246–258 (2009)

    Article  Google Scholar 

  18. Ramírez-Cadena, M., Correa, M., Rodríguez-González, C., Alique, J.R.: Surface roughness modeling based on surface roughness feature concept for high speed machining. Am. Soc. Mech. Eng. Manuf. Eng. Div. 16(1), 811–815 (2005)

    Google Scholar 

  19. Soleimanimehr, H., Nategh, M., Amini, S.: Modelling of surface roughness in vibration cutting by artificial neural network. Proc. World Acad. Sci. Eng. Technol. 40, 386–390 (2009)

    Google Scholar 

  20. Stone, M.: Cross-validatory choice and assessment of statistical prediction. J. Roy. Stat. Soc. 36, 111–147 (1974)

    MathSciNet  MATH  Google Scholar 

  21. Zhou, L., Cheng, K.: Dynamic cutting process modelling and its impact on the generation of surface topography and texture in nano/micro cutting. In: Proceedings of IMechE-2009, vol. 233, pp. 247–266 (2009)

    Google Scholar 

  22. Zuperl, U., Cus, F.: Optimization of cutting conditions during cutting by using neural networks. Robot. Comput. Integr. Manuf. 19, 189–199 (2003)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors want to thank the collaboration of Nicolás Correa S.A for the use of the M-Versa machining center made in the company, particularly thank Dr. Andrés Bustillo from Nicolás Correa S.A., who enabled experimentation in the company. The authors also thank the Centro de Automática y Robótica at CSIC (Spain), where the rest of the experimentation was made using Kondia machine-tool, as part of the team from Ghame group belonging to this center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Flores .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Flores, V., Correa, M., Quiñonez, Y. (2017). Performance of Predicting Surface Quality Model Using Softcomputing, a Comparative Study of Results. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science(), vol 10337. Springer, Cham. https://doi.org/10.1007/978-3-319-59740-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59740-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59739-3

  • Online ISBN: 978-3-319-59740-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics