Skip to main content

Detecting Potential Design Weaknesses in SHADE Through Network Feature Analysis

  • Conference paper
  • First Online:
Book cover Hybrid Artificial Intelligent Systems (HAIS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10334))

Included in the following conference series:

  • 2508 Accesses

Abstract

This preliminary study presents a hybridization of two research fields – evolutionary algorithms and complex networks. A network is created by the dynamic of an evolutionary algorithm, namely Success-History based Adaptive Differential Evolution (SHADE). Network feature, node degree centrality, is used afterward to detect potential design weaknesses of SHADE algorithm. This approach is experimentally tested on the CEC2015 benchmark set of test functions and future directions in the research are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Storn, R., Price, K.: Differential Evolution-A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces, vol. 3. ICSI, Berkeley (1995)

    MATH  Google Scholar 

  2. Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artif. Intell. Rev. 33(1–2), 61–106 (2010)

    Article  Google Scholar 

  3. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  4. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution–an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)

    Article  Google Scholar 

  5. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  6. Omran, M.G.H., Salman, A., Engelbrecht, Andries P.: Self-adaptive differential evolution. In: Hao, Y., et al. (eds.) CIS 2005. LNCS, vol. 3801, pp. 192–199. Springer, Heidelberg (2005). doi:10.1007/11596448_28

    Chapter  Google Scholar 

  7. Brest, J., Greiner, S., Bošković, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  8. Islam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N.: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans. Systems Man Cybern. Part B (Cybern.) 42(2), 482–500 (2012)

    Article  Google Scholar 

  9. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)

    Article  Google Scholar 

  10. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

    Article  Google Scholar 

  11. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 71–78, IEEE, June 2013

    Google Scholar 

  12. Tanabe, R., Fukunaga, A.S.: Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665, IEEE, July 2014

    Google Scholar 

  13. Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–553 (2009)

    Article  Google Scholar 

  14. Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact differential evolution. IEEE Trans. Evol. Comput. 15(1), 32–54 (2011)

    Article  Google Scholar 

  15. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011)

    Article  Google Scholar 

  16. Brest, J., Korošec, P., Šilc, J., Zamuda, A., Bošković, B., Maučec, M.S.: Differential evolution and differential ant-stigmergy on dynamic optimisation problems. Int. J. Syst. Sci. 44(4), 663–679 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Brest, J., Maučec, M.S., Bošković, B.: iL-SHADE: improved L-SHADE algorithm for single objective real-parameter optimization. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 1188–1195, IEEE, July 2016

    Google Scholar 

  18. Viktorin, A., Pluhacek, M., Senkerik, R.: Success-history based adaptive differential evolution algorithm with multi-chaotic framework for parent selection performance on CEC2014 benchmark set. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4797–4803, IEEE, July, 2016

    Google Scholar 

  19. Poláková, R., Tvrdík, J., Bujok, P.: L-SHADE with competing strategies applied to CEC2015 learning-based test suite. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4790–4796, IEEE, July 2016

    Google Scholar 

  20. Awad, N.H., Ali, M.Z., Suganthan, P.N., Reynolds, R.G.: An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2958–2965, IEEE, July 2016

    Google Scholar 

  21. Viktorin, A., Hrabec, D., Pluhacek, M.: Multi-chaotic differential evolution for vehicle routing problem with profits. In: Proceedings-30th European Conference on Modelling and Simulation, ECMS 2016. European Council for Modelling and Simulation (ECMS) (2016)

    Google Scholar 

  22. Szenkovits, A., Gaskó, N., Jakab, H.: Optimizing test input generation for reactive systems with an adaptive differential evolution. In: 2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 214–218, IEEE, September 2016

    Google Scholar 

  23. Zamuda, A., Sosa, J.D.H., Adler, L.: Constrained differential evolution optimization for underwater glider path planning in sub-mesoscale eddy sampling. Appl. Soft Comput. 42, 93–118 (2016)

    Article  Google Scholar 

  24. Ekici, B., Chatzikonstantinou, I., Sariyildiz, S., Tasgetiren, M.F., Pan, Q.K.: A multi-objective self-adaptive differential evolution algorithm for conceptual high-rise building design. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2272–2279, IEEE, July 2016

    Google Scholar 

  25. Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2015)

    Article  Google Scholar 

  26. Zamuda, A., Brest, J.: Self-adaptive control parameters’ randomization frequency and propagations in differential evolution. Swarm Evol. Comput. 25, 72–99 (2015)

    Article  Google Scholar 

  27. Tanabe, R., Fukunaga, A.: How far are we from an optimal, adaptive DE? In: Handl, J., Hart, E., Lewis, Peter R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 145–155. Springer, Cham (2016). doi:10.1007/978-3-319-45823-6_14

    Chapter  Google Scholar 

  28. Viktorin, A., Pluhacek, M., Senkerik, R.: Network based linear population size reduction in SHADE. In: 2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 86–93, IEEE, September 2016

    Google Scholar 

Download references

Acknowledgements

This work was supported by Grant Agency of the Czech Republic – GACR P103/15/06700S, further by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme Project no. LO1303 (MSMT-7778/2014). Also by the European Regional Development Fund under the Project CEBIA-Tech no. CZ.1.05/2.1.00/03.0089 and by Internal Grant Agency of Tomas Bata University under the Projects no. IGA/CebiaTech/2017/004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Kadavy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Viktorin, A., Pluhacek, M., Senkerik, R., Kadavy, T. (2017). Detecting Potential Design Weaknesses in SHADE Through Network Feature Analysis. In: Martínez de Pisón, F., Urraca, R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2017. Lecture Notes in Computer Science(), vol 10334. Springer, Cham. https://doi.org/10.1007/978-3-319-59650-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59650-1_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59649-5

  • Online ISBN: 978-3-319-59650-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics