Skip to main content

Obstacle Avoidance for Flight Safety on Unmanned Aerial Vehicles

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10306))

Included in the following conference series:

Abstract

In this paper, we propose an obstacle avoidance system for UAVs using a monocular camera. For detecting obstacles, the system compares the image obtained in real-time from the UAV with a database of obstacles that must be avoided. In our proposal, we include the feature point detector Speeded Up Robust Features (SURF) for fast obstacle detection and a control law, with a defined obstacle as target. The system was tested in real-time on a micro aerial vehicle (MAV), to detect and avoid obstacles on unknown environment, and compared with related works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrientos, A., del Cerro, J., Gutierrez, P., San Martin, R., Martinez, A., Rossi, C.: Vehiculos aereos no tripulados para uso civil. tecnologia y aplicaciones. Universidad politecnica de Madrid, Madrid (2007)

    Google Scholar 

  2. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 29(2), 315–378 (2012)

    Article  Google Scholar 

  3. Aguilar, W.G., Morales, S.: 3D environment mapping using the Kinect V2 and path planning based on RRT algorithms. Electronics 5(4), 70 (2016)

    Article  Google Scholar 

  4. Cabras, P., Rosell, J., Pérez, A., Aguilar, W.G., Rosell, A.: Haptic-based navigation for the virtual bronchoscopy. In: 18th IFAC World Congress, Milano, Italy (2011)

    Google Scholar 

  5. Aguilar, W.G., Angulo, C., Costa, R., Molina, L.: Control autónomo de cuadricópteros para seguimiento de trayectorias. In: IX Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2014)

    Google Scholar 

  6. Ortega, D.V., Bueno, J.A.G.-C., Merino, R.V., Sanz, S.B., Correas, A.H., Campo, D.R.: Pilotos de dron (RPAS). Ediciones Paraninfo, SA (2005)

    Google Scholar 

  7. Beyeler, A., Zufferey, J.-C., Floreano, D.: Vision-based control of near-obstacle flight. Auton. Robots 27(3), 201–219 (2009)

    Article  Google Scholar 

  8. Scherer, S., Singh, S., Chamberlain, L., Elgersma, M.: Flying fast and low among obstacles: methodology and experiments. Int. J. Robot. Res. 27(5), 549–574 (2008)

    Article  Google Scholar 

  9. Wurm, K.M., Kummerle, R., Stachniss, C., Burgard, W.: Improving robot navigation in structured outdoor environments by identifying vegetation from laser data. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE (2009)

    Google Scholar 

  10. Merz, T., Kendoul, F.: Beyond visual range obstacle avoidance and infrastructure inspection by an autonomous helicopter. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 4953–4960 (2011)

    Google Scholar 

  11. Bachrach, A., Prentice, S., He, R., Roy, N.: Range–robust autonomous navigation in GPS-denied environments. J. Field Robot. 28(5), 644–666 (2011)

    Article  Google Scholar 

  12. Lange, S., Sünderhauf, N., Neubert, P., Drews, S., Protzel, P.: Autonomous corridor flight of a UAV using a low-cost and light-weight RGB-D camera. In: Rückert, U., Joaquin, S., Felix, W. (eds.) Advances in Autonomous Mini Robots, pp. 183–192. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27482-4_19

    Chapter  Google Scholar 

  13. Beyeler, A., Zufferey, J.-C., Floreano, D.: 3D vision-based navigation for indoor microflyers. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 1336–1341. IEEE (2007)

    Google Scholar 

  14. Oh, P.Y., Green, W.E., Barrows, G.: Neural nets and optic flow for autonomous micro-air-vehicle navigation. In: ASME 2004 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers (2004)

    Google Scholar 

  15. Zufferey, J.-C., Floreano, D.: Fly-inspired visual steering of an ultralight indoor aircraft. IEEE Trans. Robot. 22(1), 137–146 (2006)

    Article  Google Scholar 

  16. Muratet, L., Doncieux, S., Meyer, J.-A.: A biomimetic reactive navigation system using the optical flow for a rotary-wing UAV in urban environment. In: Proceedings of the International Session on Robotics (2004)

    Google Scholar 

  17. Merrell, P.C., Lee, D.-J., Beard, R.W.: Obstacle avoidance for unmanned air vehicles using optical flow probability distributions. In: Optics East. International Society for Optics and Photonics, pp. 13–22 (2004)

    Google Scholar 

  18. Alenya, G., Negre, A., Crowley, J.L.: A comparison of three methods for measure of time to contact. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4565–4570. IEEE (2009)

    Google Scholar 

  19. Chavez, A., Gustafson, D.: Vision-based obstacle avoidance using SIFT features. In: Bebis, G., et al. (eds.) ISVC 2009. LNCS, vol. 5876, pp. 550–557. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10520-3_52

    Chapter  Google Scholar 

  20. Kim, D., Dahyot, R.: Face components detection using SURF descriptors and SVMS. In: International Machine Vision and Image Processing Conference, IMVIP 2008, pp. 51–56. IEEE (2008)

    Google Scholar 

  21. Chu, D.M., Smeulders, A.W.M.: Color invariant SURF in discriminative object tracking. In: Kutulakos, K.N. (ed.) ECCV 2010. LNCS, vol. 6554, pp. 62–75. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35740-4_6

    Chapter  Google Scholar 

  22. He, W., Yamashita, T., Lu, H., Lao, S.: Surf tracking. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1586–1592. IEEE (2009)

    Google Scholar 

  23. Krajnık, T., Nitsche, M., Pedre, S., Preucil, L., Mejail, M.E.: A simple visual navigation system for an UAV. In: 2012 9th International Multi-Conference on Systems, Signals and Devices (SSD), pp. 1–6. IEEE (2012)

    Google Scholar 

  24. Mori, T., Scherer, S.: First results in detecting and avoiding frontal obstacles from a monocular camera for micro unmanned aerial vehicles. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 1750–1757. IEEE (2013)

    Google Scholar 

  25. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  26. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, p. 50. Citeseer (1988)

    Google Scholar 

  27. Miksik, O., Mikolajczyk, K.: Evaluation of local detectors and descriptors for fast feature matching. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 2681–2684. IEEE (2012)

    Google Scholar 

  28. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  29. Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: 2012 IEEE conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2012)

    Google Scholar 

  30. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: 2011 International Conference on Computer Vision. IEEE (2011)

    Google Scholar 

  31. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  32. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  33. Aguilar, W.G., Angulo, C.: Estabilización de vídeo en micro vehículos aéreos y su aplicación en la detección de caras. In: IX Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2014)

    Google Scholar 

  34. Aguilar, W.G., Angulo, C.: Estabilización robusta de vídeo basada en diferencia de nivel de gris. In: VIII Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2013)

    Google Scholar 

  35. Aguilar, W.G., Angulo, C.: Compensación y aprendizaje de efectos generados en la imagen durante el desplazamiento de un robot. In: X Simposio CEA de Ingeniería de Control, Barcelona, Spain (2012)

    Google Scholar 

  36. Aguilar, W.G., Angulo, C.: Compensación de los efectos generados en la imagen por el control de navegación del robot Aibo ERS 7. In: VII Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2012)

    Google Scholar 

  37. Juan, L., Gwun, O.: A comparison of SIFT, PCA-sift and SURF. Int. J. Image Process. (IJIP) 3(4), 143–152 (2009)

    Google Scholar 

  38. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. 511–518. IEEE (2001)

    Google Scholar 

  39. Huang, D.-S., Jo, K.-H., Hussain, A.: Intelligent Computing Theories and Methodologies: 11th International Conference, ICIC 2015, Fuzhou, China, 20–23 August 2015, vol. 9226. Springer, Heidelberg (2015)

    MATH  Google Scholar 

  40. Torr, P.H., Zisserman, A.: MLESAC: a new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 78(1), 138–156 (2000)

    Article  Google Scholar 

  41. Derpanis, K.G.: Overview of the RANSAC algorithm. Image Rochester N. Y. 4(1), 2–3 (2010)

    Google Scholar 

  42. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  43. Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)

    Article  Google Scholar 

  44. Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 1, 1–13 (2014)

    Google Scholar 

  45. Aguilar, W.G., Angulo, C.: Robust video stabilization based on motion intention for low-cost micro aerial vehicles. In: 11th International Multi-conference on Systems, Signals & Devices (SSD), Barcelona, Spain (2014)

    Google Scholar 

Download references

Acknowledgement

This work is part of the projects VisualNavDrone 2016-PIC-024 and MultiNavCar 2016-PIC-025, from the Universidad de las Fuerzas Armadas ESPE, directed by Dr. Wilbert G. Aguilar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbert G. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Aguilar, W.G., Casaliglla, V.P., Pólit, J.L., Abad, V., Ruiz, H. (2017). Obstacle Avoidance for Flight Safety on Unmanned Aerial Vehicles. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59147-6_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59146-9

  • Online ISBN: 978-3-319-59147-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics