Skip to main content

RGB-D Computer Vision Techniques for Simulated Prosthetic Vision

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2017)

Abstract

Recent research on visual prosthesis demonstrates the possibility of providing visual perception to people with certain blindness. Bypassing the damaged part of the visual path, electrical stimulation provokes spot percepts known as phosphenes. Due to physiological and technological limitations the information received by patients has very low resolution and reduced dynamic range. In this context, the inclusion of new computer vision techniques to improve the semantic content in this information channel is an active and open key topic. In this paper, we present a system for Simulated Prosthetic Vision based on a head-mounted display with an RGB-D camera, and two tools, one focused on human interaction and the other oriented to navigation, exploring different proposals of phosphenic representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Oculus Rift www.oculus.com/rift/.

  2. 2.

    Microsoft Kinect V2.

  3. 3.

    http://webdiis.unizar.es/%7Ebermudez/phosphenicRepresentation.wmv.

References

  1. Ahuja, A.K., Behrend, M.R.: The Argus\(^{TM}\) II retinal prosthesis: factors affecting patient selection for implantation. Progr. Retinal Eye Res. 36, 1–23 (2013)

    Article  Google Scholar 

  2. Aladren, A., Lopez-Nicolas, G., Puig, L., Guerrero, J.J.: Navigation assistance for the visually impaired using RGB-D sensor with range expansion. IEEE Syst. J. 10(3), 922–932 (2016)

    Article  Google Scholar 

  3. Asher, A., Segal, W.A., Baccus, S.A., Yaroslavsky, L.P., Palanker, D.V.: Image processing for a high-resolution optoelectronic retinal prosthesis. IEEE Trans. Biomed. Eng. 54(6), 993–1004 (2007)

    Article  Google Scholar 

  4. Ayton, L.N., Luu, C.D., Bentley, S.A., Allen, P.J., Guymer, R.H.: Image processing for visual prostheses: a clinical perspective. In: IEEE International Conference on Image Processing, pp. 1540–1544 (2013)

    Google Scholar 

  5. Barnes, N.: An overview of vision processing in implantable prosthetic vision. In: IEEE International Conference on Image Processing, pp. 1532–1535 (2013)

    Google Scholar 

  6. Cha, K., Boman, D.K., Horch, K.W., Normann, R.A.: Reading speed with a pixelized vision system. JOSA A 9(5), 673–677 (1992)

    Article  Google Scholar 

  7. Chang, M., Kim, H., Shin, J., Park, K.: Facial identification in very low-resolution images simulating prosthetic vision. J. Neural Eng. 9(4), 046012 (2012)

    Article  Google Scholar 

  8. Chen, S.C., Suaning, G.J., Morley, J.W., Lovell, N.H.: Simulating prosthetic vision: visual models of phosphenes. Vis. Res. 49(12), 1493–1506 (2009)

    Article  Google Scholar 

  9. Denis, G., Jouffrais, C., Mailhes, C., Macé, M.J.: Simulated prosthetic vision: improving text accessibility with retinal prostheses. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1719–1722 (2014)

    Google Scholar 

  10. Dobelle, W.H., Mladejovsky, M., Girvin, J.: Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 183(4123), 440–444 (1974)

    Article  Google Scholar 

  11. Dobelle, W.H.: Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J. 46(1), 3–9 (2000)

    Article  Google Scholar 

  12. Fornos, A.P., Sommerhalder, J., Pelizzone, M.: Reading with a simulated 60-channel implant. Front. Neurosci. 5, 57 (2011)

    Article  Google Scholar 

  13. Gutiérrez-Gómez, D., Mayol-Cuevas, W., Guerrero, J.J.: Inverse depth for accurate photometric and geometric error minimisation in RGB-D dense visual odometry. In: IEEE International Conference on Robotics and Automation, pp. 83–89 (2015)

    Google Scholar 

  14. Horne, L., Alvarez, J., McCarthy, C., Salzmann, M., Barnes, N.: Semantic labeling for prosthetic vision. Comput. Vis. Image Underst. 149, 113–125 (2016)

    Article  Google Scholar 

  15. Horne, L., Barnes, N., McCarthy, C., He, X.: Image segmentation for enhancing symbol recognition in prosthetic vision. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2792–2795 (2012)

    Google Scholar 

  16. Hornig, R., Zehnder, T., Velikay-Parel, M., Laube, T., Feucht, M., Richard, G.: The IMI retinal implant system. In: Humayun, M.S., Weiland, J.D., Chader, G., Greenbaum, E. (eds.) Artificial Sight, pp. 111–128. Springer, New York (2007)

    Chapter  Google Scholar 

  17. Jung, J.H., Aloni, D., Yitzhaky, Y., Peli, E.: Active confocal imaging for visual prostheses. Vis. Res. 111, 182–196 (2015)

    Article  Google Scholar 

  18. Li, W.: Wearable computer vision systems for a cortical visual prosthesis. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 428–435 (2013)

    Google Scholar 

  19. Li, Y., McCarthy, C., Barnes, N.: On just noticeable difference for bionic eye. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2961–2964 (2012)

    Google Scholar 

  20. Lieby, P., Barnes, N., McCarthy, C., Liu, N., Dennett, H., Walker, J.G., Botea, V., Scott, A.F.: Substituting depth for intensity and real-time phosphene rendering: visual navigation under low vision conditions. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 8017–8020 (2011)

    Google Scholar 

  21. Lui, W.L.D., Browne, D., Kleeman, L., Drummond, T., Li, W.H.: Transformative reality: improving bionic vision with robotic sensing. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 304–307 (2012)

    Google Scholar 

  22. McCarthy, C., Barnes, N., Lieby, P.: Ground surface segmentation for navigation with a low resolution visual prosthesis. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4457–4460 (2011)

    Google Scholar 

  23. McCarthy, C., Walker, J.G., Lieby, P., Scott, A., Barnes, N.: Mobility and low contrast trip hazard avoidance using augmented depth. J. Neural Eng. 12(1), 016003 (2014)

    Article  Google Scholar 

  24. Meffin, H.: What limits spatial perception with retinal implants?. In: IEEE International Conference on Image Processing, pp. 1545–1549 (2013)

    Google Scholar 

  25. Mur-Artal, R., Montiel, J., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  26. Parikh, N., Itti, L., Weiland, J.: Saliency-based image processing for retinal prostheses. J. Neural Eng. 7(1), 016006 (2010)

    Article  Google Scholar 

  27. Perez-Yus, A., Gutierrez-Gomez, D., Lopez-Nicolas, G., Guerrero, J.J.: Stairs detection with odometry-aided traversal from a wearable RGB-D camera. Comput. Vis. Image Underst. 154, 192–205 (2017)

    Article  Google Scholar 

  28. Products, S.S.M.: Argus II retinal prosthesis system surgeon manual (2013)

    Google Scholar 

  29. Srivastava, N.R., Troyk, P.R., Dagnelie, G.: Detection, eye-hand coordination and virtual mobility performance in simulated vision for a cortical visual prosthesis device. J. Neural Eng. 6(3), 035008 (2009)

    Article  Google Scholar 

  30. Stacey, A., Li, Y., Barnes, N.: A salient information processing system for bionic eye with application to obstacle avoidance. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5116–5119 (2011)

    Google Scholar 

  31. Thompson, R.W., Barnett, G.D., Humayun, M.S., Dagnelie, G.: Facial recognition using simulated prosthetic pixelized vision. Invest. Ophthalmol. Vis. Sci. 44(11), 5035–5042 (2003)

    Article  Google Scholar 

  32. Tsai, D., Morley, J., Suaning, G.J., Lovell, N.H.: A wearable real-time image processor for a vision prosthesis. Comput. Methods Programs Biomed. 95(3), 258–269 (2009)

    Article  Google Scholar 

  33. Wang, J., Wu, X., Lu, Y., Wu, H., Kan, H., Chai, X.: Face recognition in simulated prosthetic vision: face detection-based image processing strategies. J. Neural Eng. 11(4), 046009 (2014)

    Article  Google Scholar 

  34. Weiland, J.D., Parikh, N., Pradeep, V., Medioni, G.: Smart image processing system for retinal prosthesis. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 300–303 (2012)

    Google Scholar 

  35. Zapf, M.P.H., Boon, M.Y., Lovell, N.H., Suaning, G.J.: Assistive peripheral phosphene arrays deliver advantages in obstacle avoidance in simulated end-stage retinitis pigmentosa: a virtual-reality study. J. Neural Eng. 13(2), 026022 (2016)

    Article  Google Scholar 

  36. Zrenner, E.: Will retinal implants restore vision? Science 295(5557), 1022–1025 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Spanish Government/European Union projects DPI2014-61792-EXP and DPI2015-65962-R (MINECO/FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Bermudez-Cameo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bermudez-Cameo, J., Badias-Herbera, A., Guerrero-Viu, M., Lopez-Nicolas, G., Guerrero, J.J. (2017). RGB-D Computer Vision Techniques for Simulated Prosthetic Vision. In: Alexandre, L., Salvador Sánchez, J., Rodrigues, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2017. Lecture Notes in Computer Science(), vol 10255. Springer, Cham. https://doi.org/10.1007/978-3-319-58838-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58838-4_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58837-7

  • Online ISBN: 978-3-319-58838-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics