Skip to main content

Grapevine fanleaf virus and Other Old World Nepoviruses

  • Chapter
  • First Online:
Grapevine Viruses: Molecular Biology, Diagnostics and Management

Abstract

Eleven of the 15 Vitis-infecting nepoviruses are thought to have an Old World origin, either Eurasian, i.e., Grapevine fanleaf virus (GFLV); European, i.e., Arabis mosaic virus (ArMV), tomato black ring virus (TBRV), Grapevine chrome mosaic virus (GCMV), Grapevine Bulgarian latent virus (GBLV), raspberry ringspot virus (RpRSV), artichoke Italian latent virus (AILV), and cherry leaf roll virus (CLRV); north African (Tunisia), i.e., Grapevine Tunisian ringspot virus (GTRSV); and Asiatic (Turkey and Iran), i.e., Grapevine deformation virus (GDeV) and Grapevine Anatolian ringspot virus (GARSV). Only four of these viruses (GFLV, ArMV, RpRSV, and TBRV) have ectoparasitic longidorid nematodes belonging to the genera Xiphinema, Longidorus, and Paralongidorus as recognized vectors . Whereas mechanical transfer to herbaceous indicators is readily achieved with all these viruses, their transmission through pollen and seeds is rare and does not seem to occur in grapevines. Some of these viruses (GFLV, GBLV, GCMV, GTRSV, GDeV, and GARSV) are apparently restricted to Vitis, while AILV, CLRV, RpRSV, and TBRV have a host range that includes woody and herbaceous crops, as well as weed species. All these viruses cause systemic, symptomatic infections in grapevines. Depending on the strains involved, infection with these viruses induces either chlorotic mottling and deformation of leaves and canes (by the distorting strains) or bright yellow discolorations of the leaves (by the chromogenic strains). Like all known nepoviruses, the grapevine-infecting ones from the Old World have a bipartite genome and require both genomic RNAs for infection. Planting selected stocks that have undergone sanitation and certification procedures in soils free of the nematode vectors should guarantee the sanitary conditions of new plantings for the lifespan of the vineyards. This is not the case for plantings in nematode-infested soils because removal of the roots from the previous stand and prolonged fallow period do not prevent the resurgence of the infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aballay, E., A. Martensson, and P. Persson. 2011. Screening of rhizosphere bacteria from grapevine for their suppressive effect on Xiphinema index Thorne & Allen on in vitro grape plants. Plant and Soil 347: 313–325.

    Article  CAS  Google Scholar 

  • Aballay, E., S. Prodan, A. Martensson, and P. Persson. 2012. Assessment of rhizobacteria from grapevine for their suppressive effect on the parasitic nematode Xiphinema index. Crop Protection 42: 36–41.

    Article  Google Scholar 

  • Abawi, G.S., and T.L. Widmer. 2000. Impact of soil health management practices on soilborne pathogens, nematodes, and root diseases of vegetable crops. Applied Soil Ecology 15: 37–47.

    Article  Google Scholar 

  • Abou Ghanem-Sabanadzovic, N., S. Sabanadzovic, M. Digiaro, and G.P. Martelli. 2005. Complete nucleotide sequence of the RNA-2 of grapevine deformation and Grapevine Anatolian ringspot viruses. Virus Genes 30: 335–340.

    Article  CAS  Google Scholar 

  • Andret-Link, P., and M. Fuchs. 2005. Transmission specificity of plant viruses by vectors. Journal of Plant Pathology 87: 153–165.

    Google Scholar 

  • Andret-Link, P., C. Schmitt-Keichinger, G. Demangeat, V. Komar, and M. Fuchs. 2004. The specific transmission of Grapevine fanleaf virus by its nematode vector Xiphinema index is solely determined by the viral coat protein. Virology 320: 12–22.

    Article  CAS  PubMed  Google Scholar 

  • Bacher, J.W., D. Warkentin, D. Ramsdell, and J.F. Hancock. 1994. Selection versus recombination: What is maintaining identity in the 3′ termini of blueberry leaf mottle nepovirus RNA-1 and RNA-2? Journal of General Virology 75: 2133–2138.

    Article  CAS  PubMed  Google Scholar 

  • Belin, C., C. Schmitt, G. Demangeat, V. Komar, L. Pinck, and M. Fuchs. 2001. Involvement of RNA2-encoded proteins in the specific transmission of grapevine fanleaf virus by its nematode vector Xiphinema index. Virology 291: 161–171.

    Article  CAS  PubMed  Google Scholar 

  • Belval, L., A. Marmonier, P. Schellenberger, P. Andret-Link, C. Keichinger S. Gersch, V. Komar, E. Vigne, S. Trapani, P. Bron, B. Lorber, C. Sauter, M. Fuchs, O. Lemaire, C. Ritzenthaler, and G. Demangeat. 2015. New insights in nepovirus capsid determinants involved in the transmission by Xiphinema spp. In Proceedings 18th meeting of ICVG, Ankara, Turkey, 30–31.

    Google Scholar 

  • Bercks, R., H. Brückbauer, G. Querfurth, and M. Rüdel. 1977. Untersuchungen überdie Viruskrankheited der rebe unter besonderer Berüchsichtigung “atypischer Formen” der Reisigkrankheit. Weinberg und Keller 24: 133–180.

    Google Scholar 

  • Bláhová, L., and M. Pidra. 2009. Real-time PCR of grapevine fanleaf virus. In Extended abstracts 16th meeting of ICVG, Dijon, France, 83–84.

    Google Scholar 

  • Blok, V.C., J. Wardell, C.A. Jolly, A. Manoukian, D.J. Robinson, M.L. Edwards, and M.A. Mayo. 1992. The nucleotide sequence of RNA-2 of raspberry ringspot nepovirus. Journal of General Virology 73: 2189–2194.

    Article  CAS  PubMed  Google Scholar 

  • Boscia, D., M. Digiaro, J. Fresno, C. Greif, S. Grenan, H.H. Kassemeyer, V.A. Prota, and O.A. De Sequeira. 1997. ELISA for the detection and identification of grapevine viruses. Sanitary selection of the grapevine, Les Colloques no. 86, 130–155. Paris: Editions INRA.

    Google Scholar 

  • Boubals, D. 1969. Observations sur la non-transmission par graine de deux viroses chez la vigne (Vitis vinifera). Annales de l’amélioration des plantes 19: 213–219.

    Google Scholar 

  • Boubals, D., and R. Pistre. 1978. Résistance de certaines Vitacées et des porte-greffes usuels en viticulture au nématode Xiphinema index et à l’inoculation par le virus du court-noué (GFV). In Génétique et Amélioration de la Vigne, 200–207. Paris: Editions INRA.

    Google Scholar 

  • Bouquet, A. 1981. Resistance to grape fanleaf virus in Muscadine grape inoculated with Xiphinema index. Plant Disease 65: 791–793.

    Article  Google Scholar 

  • ———. 1983. Détection immunoenzymatique du virus du court-noué de la vigne dans son vecteur Xiphinema index Thorne et Allen. Comptes Rendues Hebdomadaires des Séances de l’Academie des Sciences, Ser. III 296: 271–274.

    Google Scholar 

  • Bovey, R., J.J. Brugger, and P. Gugerli. 1980. Detection of fanleaf virus in grapevine tissue extracts by enzyme-linked immunosorbent assay (ELISA) and immune electron microscopy (IEM). In Proceedings 7th meeting of ICVG, Niagara Falls, NY, USA, 259–275.

    Google Scholar 

  • Brandt, S., and G. Himmler. 1995. Detection of nepoviruses in ligneous grapevine material by using IC/PCR. Vitis 34: 127–128.

    CAS  Google Scholar 

  • Brault, V., L. Hilbrand, T. Candresse, O. Le Gall, and J. Dunez. 1989. Nucleotide sequence and genetic organization of Hungarian grapevine chrome mosaic nepovirus RNA-2. Nucleic Acids Research 17: 7809–7819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bretout, C., T. Candresse, O. Le Gall, V. Brault, M. Ravelonandro, and J. Dunez. 1989. Virus and RNA-specific molecular hybridization probes for two nepoviruses. Acta Horticulturae 235: 231.

    Article  Google Scholar 

  • Brown, D.J.F., and B. Weischer. 1998. Specificity, exclusivity and complementarity in the transmission of plant viruses by plant parasitic nematodes: An annotated terminology. Fundamental and Applied Nematology 21: 1–11.

    Google Scholar 

  • Brown, D.J.F., D.L. Trudgill, and W.M. Robertson. 1996. Nepoviruses: Transmission by nematodes. In The plant viruses: Polyhedral virions and bipartite RNA genomes, ed. B.D. Harrison and A.F. Murrant, 187–209. New York: Plenum Press.

    Chapter  Google Scholar 

  • Brückbauer, H. 1961. Untersuchungen über die Viruskrankheiten der Rebe. III. Samenübertragbarkeit der Reisigkrankheit des Silvaners bei einer Testpflanze sowie Untersuchungen über das evtl. Vorkommen des Virus an Weinbergsunkräutern. Wein-Wissenschaft 16: 187–189.

    Google Scholar 

  • Burrows, P.R., A.D.P. Barker, C.A. Newell, and W.D.O. Hamilton. 1998. Plant derived enzyme inhibitors and lectins for resistance against plant-parasitic nematodes in transgenic crops. Pesticide Science 52: 176–183.

    Article  CAS  Google Scholar 

  • Cadman, C.H., H.F. Dias, and B.D. Harrison. 1960. Sap-transmissible viruses associated with diseases of grape vines in Europe and North America. Nature (London) 187: 577–579.

    Google Scholar 

  • Callahan, K.L. 1957. Pollen transmission of elm mosaic virus. Phytopathology 47: 5.

    Google Scholar 

  • Carrier, K., Y. Xiang, and H. Sanfaçon. 2001. Genomic organization of RNA2 of Tomato ringspot virus: Processing at a third cleavage site in the N-terminal region of the polyprotein in vitro. Journal of General Virology 82: 1785–1790.

    Article  CAS  PubMed  Google Scholar 

  • Catalano, L., V. Savino, and F. Lamberti. 1991. ELISA for the detection of grapevine fanleaf nepovirus in Xiphinema index. In Proceedings 10th meeting of ICVG, Volos, Greece, 243–246.

    Google Scholar 

  • Cepin, U., I. Gutierres-Aguirre, L. Balazic, M. Pompe-Novak, K. Gruden, and M. Ravnikar. 2010. A one-step reverse transcription real-time PCR assay for the detection and quantitation of Grapevine fanleaf virus. Journal of Virological Methods 170: 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Childress, A.M., and D.C. Ramsdell. 1986. Lack of evidence for a nematode vector of blueberry leaf mottle virus (BBLMV). Acta Horticulturae 186: 87–91.

    Article  Google Scholar 

  • ———. 1987. Bee-mediated transmission of blueberry leaf mottle virus via infected pollen in highbush blueberry. Phytopathology 77: 167–172.

    Article  Google Scholar 

  • Cigsar, I., M. Digiaro, K. Gokalp, N. Abou Ghanem-Sabanadzovic, A. De Stradis, D. Boscia, and G.P. Martelli. 2003. Grapevine deformation virus, a novel nepovirus from Turkey. Journal of Plant Pathology 85: 35–41.

    Google Scholar 

  • Clark, M.F., and A.N. Adams. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. The Journal of General Virology 34: 475–483.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, J.I. 1976. The possible epidemiological significance of pollen and seed transmission in the cherry leaf roll virus, Betula spp. complex. Mitteilungen biologische Bundes Anstalt Land und. Forstwirtschaft 170: 17–21.

    Google Scholar 

  • Cory, L., and W.B. Hewitt. 1968. Some grapevine viruses in pollen and seeds. Phytopathology 58: 1316–1318.

    Google Scholar 

  • Credi, R., A.R. Babini, L. Betti, A. Bertaccini, and C. Gelli. 1981. A distinctive isolate of strawberry latent ringspot virus from grapevines in Italy. Phytopathologia Mediterranea 20: 56–63.

    Google Scholar 

  • Darago, A., M. Szabo, K. Hracs, A. Takacs, and P.I. Nagy. 2013. In vitro investigations on the biological control of Xiphinema index with Trichoderma species. Helminthologia 50: 132–137.

    Article  Google Scholar 

  • Das, S., and D.J. Raski. 1969. Effect of grapevine fanleaf virus on the reproduction and the survival of its nematode vector, Xiphinema index Thorne and Allen. Journal of Nematology 1: 107–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Decraemer, W., and E. Geraert. 2006. Ectoparasitic nematodes. In Plant nematology, ed. J.N. Perry and M. Moens, 153–184. Wallingford: CAB International.

    Chapter  Google Scholar 

  • Demangeat, G. 2009. Nematode-transmitted nepoviruses with special emphasis on the pair grapevine fanleaf virus/Xiphinema index. In Extended abstracts 16th meeting of ICVG, Dijon, France, Progrès Agricole et Viticole, 2009, Hors Série, 64–68.

    Google Scholar 

  • Demangeat, G., V. Komar, P. Cornuet, D. Esmenjaud, and M. Fuchs. 2004. A sensitive and reliable detection of Grapevine fanleaf virus in a single Xiphinema index nematode vector. Journal of Virological Methods 122: 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Demangeat, G., R. Voisin, J.C. Minot, N. Bosselut, M. Fuchs, and D. Esmenjaud. 2005. Survival of Xiphinema index in vineyard soil and retention of Grapevine fanleaf virus over extended time in the absence of host plants. Phytopathology 95: 1151–1156.

    Article  CAS  PubMed  Google Scholar 

  • Descottes, A., and D. Moncomble. 1995. Lutte contre le court noué. Le Vigneron Champenois 9: 20–24.

    Google Scholar 

  • Dias, A. 1963. Host range and properties of Grapevine fanleaf and Grapevine yellow mosaic viruses. Annals of Applied Biology 51: 85–95.

    Article  CAS  Google Scholar 

  • Digiaro, M., N. Abou Ghanem-Sabanadzovic, I. Cigsar, K. Gokalp, A. De Stradis, D. Boscia, and G.P. Martelli. 2003. Two hitherto undescribed nepoviruses from Turkish grapevines. In Extended abstracts 14th meeting of ICVG, Locorotondo, Italy, 14–15.

    Google Scholar 

  • Digiaro, M., T. Elbeaino, and G.P. Martelli. 2007. Development of degenerate and species-specific primers for the differential and simultaneous RT-PCR detection of grapevine-infecting nepoviruses of subgroups A, B and C. Journal of Virological Methods 141: 34–40.

    Article  CAS  PubMed  Google Scholar 

  • Digiaro, M., L. Dida, V. Elicio, D. Frasheri, and T. Elbeaino. 2012a. Multiplex ELISA for the simultaneous detection of grapevine viruses. In Extended abstracts 17th meeting of ICVG, Davis, CA, USA, 144–145.

    Google Scholar 

  • Digiaro, M., S. Nahdi, and T. Elbeaino. 2012b. Complete sequence of RNA1 of grapevine Anatolian ringspot virus. Archives of Virology 157: 2013–2016.

    Article  CAS  PubMed  Google Scholar 

  • Digiaro, M., E. Yahyaoui, G.P. Martelli, and T. Elbeaino. 2015. The sequencing of the complete genome of a Tomato black ring virus (TBRV) and of the RNA2 of three Grapevine chrome mosaic virus (GCMV) isolates from grapevine reveals the possible recombinant origin of GCMV. Virus Genes 50: 165–171.

    Article  CAS  PubMed  Google Scholar 

  • Doazan, J.P. 1978. On the seed-transmission of some grapevine virus disease. In Proceedings 6th meeting of ICVG, Cordova, Spain, 83.

    Google Scholar 

  • Dodd, S.M., and D.J. Robinsos. 1987. Conservation of the 3′-terminal sequences of the genome RNA species of tomato black ring virus. Journal of General Virology 68: 973–978.

    Article  CAS  Google Scholar 

  • Eastwell, K.C., T.A. Mekuria, and K.L. Druffel. 2012. Complete nucleotide sequences and genome organization of a cherry isolate of cherry leaf roll virus. Archives of Virology 157: 761–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebel, R., A. Schnabel, G.M. Reustle, G. Krczal, and T. Wetzel. 2003. Molecular characterization of two German raspberry ringspot virus isolates infecting grapevines and construction of full length infectious clones. In Extended abstracts 14th meeting of ICVG, Locorotondo, Italy, 16.

    Google Scholar 

  • EFSA (EFSA Panel on Plant Health). 2013. Scientific opinion on the risk to plant health posed by Arabis mosaic virus, Raspberry ringspot virus, Strawberry latent ringspot virus and Tomato black ring virus to the EU territory with the identification and evaluation of risk reduction options. EFSA Journal 11: 3377. Annales de Phytopathologie, No hors série, 113–120.

    Google Scholar 

  • Eichmeier, A., M. Baránek, and M. Pidra. 2011. Genetic variability of Grapevine fanleaf virus isolates within genes 1BHEL and 1EPOL. Journal of Plant Pathology 93: 511–515.

    CAS  Google Scholar 

  • Elbeaino, T., M. Digiaro, F. Fallanaj, S. Kuzmanovic, and G.P. Martelli. 2011. Complete nucleotide sequence and genome organization of Grapevine Bulgarian latent virus. Archives of Virology 156: 875–879.

    Article  CAS  PubMed  Google Scholar 

  • Elbeaino, T., M. Digiaro, S. Ghebremeskel, and G.P. Martelli. 2012. Grapevine deformation virus: Completion of the sequence and evidence on its origin from recombination events between grapevine fanleaf virus and arabis mosaic virus. Virus Research 166: 136–140.

    Article  CAS  PubMed  Google Scholar 

  • Elbeaino, T., H. Kiyi, R. Boutarfa, A. Minafra, G.P. Martelli, and M. Digiaro. 2014. Phylogenetic analysis of the homing protein domain of Grapevine fanleaf virus (GFLV) isolates associated with “yellow mosaic” and “infectious malformation” syndromes in grapevines. Archives of Virology 159: 2757–2764.

    Article  CAS  PubMed  Google Scholar 

  • Esmanjaud, D., B. Walter, G. Valentin, Z.T. Guo, and D. Cluzeau. 1992. Vertical distribution and infectious potential of Xiphinema index (Thorne et Allen, 1950) (Nematoda: Longidoridae) in fields affected by grapevine fanleaf virus in vineyards in the Champagne region of France. Agronomie 12: 395–399.

    Article  Google Scholar 

  • Etienne, L., J.M. Clauzel, and M. Fuchs. 1991. Simultaneous detection of several nepoviruses infecting grapevine in a single DAS-ELISA test using mixed antisera. Journal of Phytopathology 131: 89–100.

    Article  CAS  Google Scholar 

  • Faggioli, F., and S. La Starza. 2006. One-step multiplex RT-PCR for simultaneous detection of eight grapevine viruses and its application in a sanitary selection program. In Extended abstracts 15th meeting of ICVG, Stellenbosch, South Africa, 120–121.

    Google Scholar 

  • Ferreira, A.A., and O.A. De Sequeira. 1972. Preliminary studies on an undescribed grapevine virus. In Proceedings 4th meeting of ICVG, Colmar, France. Annales de Phytopathologie, No. hors série, 113–120.

    Google Scholar 

  • Fischer, R., and S. Schillberg. 2003. Engineering durable resistance in grapevines: A novel strategy for integrated disease management to overcome environmental impact of pesticides. In Extended abstracts 14th meeting of ICVG, Locorotondo-Bari, Italy, 224.

    Google Scholar 

  • Fresno, J., C. Blas, M. De Arias, and J. Romero. 1996. Detección del nepovirus del entrenudo corto infeccioso de la vid en su nematodo vector por ELISA y PCR, 83. Cordoba: VIII Congreso Nacional de la Sociedad Española de Fitopatología.

    Google Scholar 

  • Frison, E.A., and R. Stace-Smith. 1992. Cross-reacting and heterospecific monoclonal antibodies produced against Arabis mosaic nepovirus. Journal of General Virology 73: 2525–2530.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs, M. 2003. Transgenic resistance: State of the art and perspectives. In Extended abstracts 14th meeting of ICVG, Locorotondo-Bari, Italy, 221–223.

    Google Scholar 

  • ———. 2006. Transgenic resistance: Advances and prospects. In Extended abstracts 15th meeting of ICVG, Stellenbosch, South Africa, 54–56.

    Google Scholar 

  • Fuchs, M., M. Pinck, M.A. Serghini, M. Ravelonandro, B. Walter, and L. Pinck. 1989. The nucleotide sequence of satellite RNA in Grapevine fanleaf virus strain F13. Journal of General Virology 70: 955–962.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs, M., M. Pinck, L. Etienne, L. Pinck, and B. Walter. 1991. Characterization and detection of grapevine fanleaf virus by using cDNA probes. Phytopatology 81: 559–565.

    Article  CAS  Google Scholar 

  • Gaire, F., C. Schmitt, C. Stussi-Garaud, L. Pinck, and C. Ritzenthaler. 1999. Protein 2A of grapevine fanleaf nepovirus is implicated in RNA2 replication and colocalizes to the replication site. Virology 264: 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Gallitelli, D., V. Savino, and O.A. De Sequeira. 1983. Properties of a distinctive strain of Grapevine Bulgarian latent virus. Phytopathologia Mediterranea 22: 27–32.

    Google Scholar 

  • Garau, R., V. Padilla, I. Rumbos, B. Walter, and V. Savino. 1997. Indexing for the identification of virus and virus-like diseases of the grapevine. In Sanitary selection of the grapevine. Protocols for detection of viruses and virus-like diseases, Les Colloques, 86, ed. B. Walter, 97–117. Paris: Editions INRA.

    Google Scholar 

  • Gemmrich, A.R., G. Link, and M. Seidel. 1993. Detection of grapevine fanleaf virus in infected grapevine by non-radioactive nucleic acid hybridization. Vitis 32: 237–242.

    Google Scholar 

  • Gokalp, K., M. Digiaro, I. Cigsar, N. Abou Ghanem-Sabanadzovic, A. De Stradis, D. Boscia, and G.P. Martelli. 2003. Properties of a previously undescribed nepovirus from south-east Anatolia. Journal of Plant Pathology 85: 35–41.

    Google Scholar 

  • Golino, D.A., J.K. Uyemoto, and A.C. Goheen. 1992. Grape virus diseases. In Grape pest management, ed. D.L. Flaherty, L.P. Christensen, W.T. Lanini, J.J. Marois, P.A. Phillips, and L.J. Wilson, 101–109. Oakland: University of California, Division of Agriculture and Natural Resources Publication, 3343.

    Google Scholar 

  • Gottula, J., D. Lapato, K. Cantilina, S. Saito, B. Bartlett, and M. Fuchs. 2013. Genetic variability, evolution, and biological effects of Grapevine fanleaf virus satellite RNAs. Phytopathology 103: 1180–1187.

    Article  CAS  PubMed  Google Scholar 

  • Greif, C., O. Hemmer, and C. Fritsch. 1988. Nucleotide sequence of tomato black ring virus RNA-1. Journal of General Virology 69: 1517–1529.

    Article  CAS  Google Scholar 

  • Hadidi, A., and R.W. Hammond. 1989. Construction of molecular clones for identification and detection of Tomato ringspot and Arabis mosaic viruses. Acta Horticulturae 235: 223–230.

    Article  Google Scholar 

  • Hajizadeh, M., N. Sokhandan-Bashir, and T. Elbeaino. 2012. First report of Grapevine deformation virus and Grapevine Anatolian ringspot virus in Iran. Journal of Plant Pathology 94: S4.96.

    Google Scholar 

  • Harrison, B.D., and A.F. Murant. 1996. The plant viruses. Vol. 5. Polyhedral virions and bipartite RNA. London: Plenum Press.

    Google Scholar 

  • Hasiów-Jaroszewska, B., N. Borodynko, M. Figlerowicz, and H. Pospieszny. 2012. Two types of defective RNAs arising from the tomato black ring virus genome. Archives of Virology 157: 569–572.

    Article  PubMed  CAS  Google Scholar 

  • Hemmer, C., E. Vigne, V. Goldschmidt, V. Komar, A. Marmonier, L. Valat, G. Demangeat, S. Vigneron, J.E. Masson, and O. Lemaire. 2009. Transgenic rootstocks expressing GFLV coat protein gene in a three years field trial; resistance assessment, impact on GFLV diversity and exchanges between rootstock and scion. In Extended abstracts 16th meeting of ICVG, Dijon, France, Le Progrés Agricole et Viticole, 2009, Hors Série, 228–229.

    Google Scholar 

  • Herrera, M.G., and V.M. Madariaga. 2001. Presence and incidence of grapevine viruses in central Chile. Agricultura Tecnica 61: 393–400.

    Google Scholar 

  • Hevin, M., M.M. Ottenwaelter, J.P. Doazan, and M. Rives. 1973. Investigating the transmission of “marbrure” and fanleaf through the seed in the grapevine. Rivista di Patologia Vegetale 9: 253–258.

    Google Scholar 

  • Hewitt, W.B. 1954. Some virus and virus-like diseases of grapevines. Bulletin of the California Department of Agriculture 43: 47–64.

    Google Scholar 

  • Hewitt, W.B., D.J. Raski, and A.C. Goheen. 1958. Nematode vector of soil-borne fanleaf virus of grapevines. Phytopathology 48: 586–595.

    Google Scholar 

  • Hewitt, W.B., A.C. Goheen, D.J. Raski, and G.V. Gooding Jr. 1962. Studies on virus diseases of the grapevine in California. Vitis 3: 57–83.

    Google Scholar 

  • Horvath, J., I. Tobias, and K. Hunyadi. 1994. New natural herbaceous hosts of grapevine fanleaf nepovirus. HortScience 26: 31–32.

    Google Scholar 

  • Hull, R. 2014. Architecture and assembly of virus particles. Plant virology. 5th ed, 69–143. New York: Academic.

    Google Scholar 

  • Huss, B., S. Muller, G. Sommermeyer, B. Walter, and M.H.V. Van Regenmortel. 1987. Grapevine fanleaf virus monoclonal antibodies: Their use to distinguish different isolates. Journal of Phytopathology 119: 358–370.

    Article  Google Scholar 

  • Huss, B., B. Walter, and M. Fuchs. 1989. Cross-protection between Arabis mosaic virus and grapevine fanleaf vius isolates in Chenopodium quinoa. Annals of Applied Biology 114: 45–60.

    Article  Google Scholar 

  • Hwang, C.F., K.N. Xu, R. Hu, R. Zhou, S. Riaz, and M.A. Walker. 2010. Cloning and characterization of XiR1, a locus responsible for dagger nematode resistance in grape. Theoretical and Applied Genetics 121: 789–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imura, Y., H. Oka, K. Kimata, M. Nasu, K. Nakahama, and T. Maeda. 2008. Comparisons of complete RNA-2 sequences, pathological and serological features among three Japanese isolates of Arabis mosaic virus. Virus Genes 37: 333–341.

    Article  CAS  PubMed  Google Scholar 

  • Ipach, U., B. Altmayer, and K.W. Heicchorn. 1992. Detection of Arabis mosaic virus using the polymerase chain reaction (PCR). Vitis 31: 213–219.

    CAS  Google Scholar 

  • Ipach, U., L. Kling, and D. Lesemann. 2003. First record of Cherry leaf roll virus in Germany. In Extended abstracts 14th meeting of ICVG, Locorotondo-Bari, Italy, 17–18.

    Google Scholar 

  • Izadpanah, K., M. Zaki-Aghl, and A. Rowhani. 2003a. Non-vitis hosts of grapevine fanleaf virus and their possible epidemiological significance. In Extended abstracts 14th meeting of ICVG Locorotondo-Bari, Italy, 210.

    Google Scholar 

  • Izadpanah, K., M. Zaki-Aghl, Y.P. Zhang, S.D. Daubert, and A. Rowhani. 2003b. Bermuda grass as a potential reservoir host for Grapevine fanleaf virus. Plant Disease 87: 1179–1182.

    Article  Google Scholar 

  • Jankulova, M., V. Savino, D. Gallitelli, A. Quacquarelli, and G.P. Martelli. 1976. Isolation of Artichoke Italian latent virus from the grapevine in Bulgaria. In Proceedings 6th meeting of ICVG, Cordoba, Spain, Monografias INIA, 18, 143–148.

    Google Scholar 

  • Jawhar, J., A. Minafra, P. La Notte, C. Pirolo, P. Saldarelli, D. Boscia, V. Savino, and G P. Martelli. 2009. Recombination events in RNA-2 of Grapevine fanleaf virus and Arabis mosaic virus in grapevines affected by yellow mosaic. In Extended abstracts 16th meeting ICVG, Dijon France, Le Progrés Agricole et Viticole, 2009, Hors Série, 73–74.

    Google Scholar 

  • Jelkmann, W., E. Maiss, M.E. Breyel, and R. Casper. 1988. Production and use of cDNA clones from arabis mosaic virus. Annals of Applied Biology 113: 483–491.

    Article  Google Scholar 

  • Jones, A.T., F.D. McElroy, and D.J.F. Brown. 1981. Tests for transmission of cherry leaf roll virus using Longidorus, Paralongidorus and Xiphinema nematodes. Annals of Applied Biology 99: 143–150.

    Article  Google Scholar 

  • Jones, A.T., D.J.F. Brown, W.J. McGavin, M. Rüdel, and B. Altmayer. 1994. Properties of an unusual isolate of Raspberry ringspot virus from grapevine in Germany and evidence of its possible transmission by Paralogidorus maximus. Annals of Applied Biology 124: 283–300.

    Article  Google Scholar 

  • Katsirdakis, K.X., U.J. Potter-Damoulakis, N.I. Katis, and K.A. Roubelakis-Angelakis. 1989. Comparison of pollen grains from grapevine-fanleaf-infected and non-infected grapevines. Phytoparasitica 17: 65–66.

    Google Scholar 

  • Kölber, M., L. Beczner, S. Pacsa, and J. Lehoczky. 1985. Detection of grapevine chrome mosaic virus in field-grown vines by ELISA. In Proceedings 8th meeting of ICVG, Bari, Italy, 135–140.

    Google Scholar 

  • Komar, V., E. Vigne, G. Demangeat, O. Lemaire, and M. Fuchs. 2008. Cross-protection as control strategy against Grapevine fanleaf virus in naturally infected vineyards. Plant Disease 92: 1689–1694.

    Article  Google Scholar 

  • Koolivand, D., N. Sokhandan-Bashira, S.A.A. Behjatniab, and R.A.J. Joozanic. 2014. Detection of Grapevine fanleaf virus by immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) with recombinant antibody. Archives of Phytopathology and Plant Protection 47: 2070–2077.

    Article  CAS  Google Scholar 

  • Krake, L.R., and R.C. Woodham. 1983. Grapevine yellow speckle agent implicated in the aetiology of vein banding disease. Vitis 22: 40–50.

    Google Scholar 

  • Lahogue, F., and G. Boulard. 1996. Recherche de genes de résistance naturelle à deux viroses de la vigne: le court-noué et l’enroulement. Vitis 35: 43–48.

    Google Scholar 

  • Laimer, M., O. Lemaire, E. Herrbach, V. Goldschmidt, A. Minafra, P. Bianco, and T. Wetzel. 2009. Resistance to viruses, phytoplasmas and their vectors in Europe: A review. Journal of Plant Pathology 91: 7–23.

    Google Scholar 

  • Lamprecht, R.L., M. Spaltman, D. Stephan, T. Wetzel, and J.T. Burger. 2013. Complete nucleotide sequence of a South African isolate of grapevine fanleaf virus and its associated satellite RNA. Viruses 5: 1815–1823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazar, J., M. Kölber, and J. Lehoczky. 1990. Detection of some nepoviruses (GFV, GFV-YM, GCMV, ArMV) in the seeds and seedlings of grapevines by ELISA. Kertgazdasag 22: 58–72.

    Google Scholar 

  • Le Gall, O., T. Candresse, V. Brault, and J. Dunez. 1989. Nucleotide sequence of Hungarian grapevine chrome mosaic nepovirus RNA-1. Nucleic Acids Research 17: 7795–7807.

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Gall, O., M. Lanneau, T. Candresse, and J. Dunez. 1995. The nucleotide sequence of the RNA-2 of an isolate of the English serotype of tomato black ring virus: RNA recombination in the history of nepoviruses. Journal of General Virology 76: 1279–1283.

    Article  PubMed  Google Scholar 

  • Le Gall, O., T. Iwanami, A. Karasev, T. Jones, K. Letho, H. Sanfacon, J. Wellink, T. Wetzel, and N. Yoshikawa. 2005. Genus Sadwavirus. In Virus taxonomy, Eight Report of the International Committee on Taxonomy of Viruses, ed. C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, and L.A. Ball, 799. San Diego: Academic.

    Google Scholar 

  • Lear, B., A.C. Goheen, and D.J. Raski. 1981. Effectiveness of soil fumigation for control of fanleaf nematode complex in grapevine. American Journal of Enology and Viticulture 32: 208–211.

    CAS  Google Scholar 

  • Legin, R., P. Bass, L. Etienne, and M. Fuchs. 1993. Selection of mild virus strains of fanleaf degeneration by comparative field performance of infected grapevine. Vitis 32: 103–110.

    Google Scholar 

  • Lehoczky, J., M. Kölber, L. Beczner, and S. Pacsa. 1984. Distribution of the grapevine chrome mosaic disease in Hungary and detection of its virus (GCMV) in the leaves of outdoor vines by ELISA technique. Kertgazdasag 16: 41–52.

    Google Scholar 

  • Liebenberg, A., M.J. Freeborough, C.J. Visser, D.U. Bellstedt, and J.T. Burger. 2009. Genetic variability within the coat protein gene of Grapevine fanleaf virus isolates from South Africa and the evaluation of RT-PCR, DAS-ELISA and ImmunoStrips as virus diagnostic assays. Virus Research 142: 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Lister, R.M., and A.F. Murant. 1967. Seed-transmission of nematode-borne viruses. Annals of Applied Biology 59: 49–62.

    Article  Google Scholar 

  • López-Fabuel, I., A. Olmos, A. Bassler, L. Dupuis-Maguiraga, L.B. Torres, E. Bertolini, and T. Wetzel. 2013. The complete genome sequence and molecular analysis of a Spanish isolate of Arabis mosaic virus infecting grapevine. Spanish Journal of Agricultural Research 11: 199–203.

    Article  Google Scholar 

  • Loudes, A.M., C. Ritzenthaler, M. Pinck, M.A. Serghini, and L. Pinck. 1995. The 119 kDa and 124 kDa polyproteins of Arabis mosaic nepovirus (isolate S) are encoded by two distinct RNA2 species. Journal of General Virology 76: 899–906.

    Article  CAS  PubMed  Google Scholar 

  • MacFarlane, S.A., D.J.F. Brown, and R. Neilson. 2002. Nematodes. Plant virus-vector interactions. Advances in Botanical Research 36: 169–197.

    Article  CAS  Google Scholar 

  • Maliogka, V.I., G.P. Martelli, M. Fuchs, and N.I. Katis. 2015. Control of viruses infecting grapevine. Advances in Virus Research 91: 175–227.

    Article  PubMed  Google Scholar 

  • Margis, R., M. Viry, M. Pinck, and L. Pinck. 1991. Cloning and in vitro characterization of the grapevine fanleaf virus proteinase cistron. Virology 185: 779–787.

    Article  CAS  PubMed  Google Scholar 

  • Margis, R., C. Ritzenthaler, J. Reinbolt, M. Pinck, and L. Pinck. 1993. Genome organization of grapevine fanleaf nepovirus RNA-2 deduced from the 122k polyprotein in vitro cleavage products. Journal of General Virology 74: 1919–1926.

    Article  CAS  PubMed  Google Scholar 

  • Margis, R., M. Viry, M. Pinck, N. Bardonnet, and L. Pinck. 1994. Differential proteolytic activities of precursors and mature forms of the 24K proteinase of grapevine fanleaf nepovirus. Virology 200: 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Martelli, G.P. 1993. Graft-transmissible diseases of grapevines, Handbook for Detection and Diagnosis. Rome: FAO Publication Division.

    Google Scholar 

  • ———. 2014. Directory of virus and virus-like. Diseases of the grapevine and their agents. Journal of Plant Pathology 96 (1S): 1–136.

    Google Scholar 

  • Martelli, G.P., and W.B. Hewitt. 1963. Comparative studies on some Italian and California virus diseases of grapevine. Phytopathologia Mediterranea 2: 285–294.

    Google Scholar 

  • Martelli, G.P., and M. Russo. 1984. Use of thin sectioning for the visualization and identification of plant viruses. Methods in Virology 8: 143–224.

    Article  Google Scholar 

  • Martelli, G.P., and C.E. Taylor. 1990. Distribution of viruses and their nematode vectors. Advances in Disease Vector Research 6: 151–189.

    Article  Google Scholar 

  • Martelli, G.P., J. Lehoczky, and A. Quacquarelli. 1965. Host range and properties of a virus associated with Hungarian grapevines showing macroscopic symptoms of fanleaf and yellow mosaic. In Proceedings international conference on virus and vector on perennial hosts, with special reference to Vitis, Davis, USA, 389–401.

    Google Scholar 

  • Martelli, G.P., A. Quacquarelli, and J. Lehoczky. 1968. Serologische Verwandschaft eines mit dem ungarischen “chrome mosaic” vergesellschafteten Virus mit einem Stamm des “Tomato black ring virus”. Weinberg und Keller 15: 505.

    Google Scholar 

  • Martelli, G.P., D. Gallitelli, P. Abracheva, V. Savino, and A. Quacquarelli. 1977. Some properties of Grapevine Bulgarian latent virus. Annals of Applied Biology 85: 51–58.

    Article  CAS  Google Scholar 

  • Mauro, M.C., S. Toutain, B. Walter, L. Pick, L. Otten, P. Coutos-Thevenot, A. Deloire, and P. Barbier. 1995. High efficiency regeneration of grapevine plants transformed with GFLV coat protein gene. Plant Science 112: 97–106.

    Article  CAS  Google Scholar 

  • Mayo, M.A., and D.J. Robinson. 1996. Nepoviruses: Molecular biology and replication. In The plant viruses: Polyhedral virions and bipartite RNA genomes, ed. B.D. Harrison and A.F. Murrant, vol. 5, 139–185. New York: Plenum Press.

    Chapter  Google Scholar 

  • Mayo, M.A., C. Fritsch, M.J. Leibowitz, P. Palukaitis, K.B. Scholtof, G. Simons, and M. Taliansky. 2000. Satellite nucleic acids. In Virus taxonomy, Seventh Report of the International Committee on Taxonomy of Viruses, ed. M.H.V. Van Regenmortel, C.M. Fauquet, D.H.L. Bishop, E.B. Carstens, M.K. Estes, S.M. Lemon, J. Maniloff, M.A. Mayo, D.J. McGeoch, C.R. Pringle, and R.B. Wickner, 1028–1032. San Diego: Academic.

    Google Scholar 

  • Mekuria, T.A., L.R. Gutha, R.R. Martin, and R.A. Naidu. 2009. Genome diversity and intra and interspecies recombination events in Grapevine fanleaf virus. Phytopathology 99: 1394–1402.

    Article  CAS  PubMed  Google Scholar 

  • Meredith, C.P., L.A. Lider, D.J. Raski, and N.L. Ferrari. 1982. Inheritance of tolerance to Xiphinema index in Vitis species. American Journal of Enology and Viticulture 33: 154–158.

    Google Scholar 

  • Meyer, M., O. Hemmer, and C. Fritsch. 1984. Complete nucleotide sequence of a satellite RNA of Tomato black ring virus. Journal of General Virology 65: 1575–1583.

    Article  CAS  Google Scholar 

  • Mircetich, S.M., R.R. Sanborn, and D.E. Ramos. 1980. Natural spread, graft-transmission and possible etiology of walnut blackline disease. Phytopathology 70: 962–969.

    Article  Google Scholar 

  • Mullins, M.G., F.C.A. Tang, and D. Facciotti. 1990. Agrobacterium-mediated genetic transformation of grapevines: Transgenic plants of Vitis ruspestris Scheele and buds of Vitis vinifera L. Biotechnology 8: 1041–1045.

    CAS  Google Scholar 

  • Murant, A.F. 1981. Nepoviruses. In Handbook of plant virus infection comparative diagnosis, ed. E. Kurstak, 197–238. Amsterdam: Elsevier/North Holland Biomedical Press.

    Google Scholar 

  • ———. 1983. Seed and pollen transmission of nematode-borne viruses. Seed Science Technology 11: 973–987.

    Google Scholar 

  • Murant, A.F., and C.E. Taylor. 1965. Treatment of soil with chemicals to prevent transmission of tomato black ring and raspberry ringspot viruses by Longidorus elongatus (De Man). Annals of Applied Biology 55: 227–237.

    Article  CAS  Google Scholar 

  • Naraghi-Arani, P., S. Daubert, and A. Rowhani. 2001. Quasispecies nature of the genome of Grapevine fanleaf virus. Journal of General Virology 82: 1791–1795.

    Article  CAS  PubMed  Google Scholar 

  • Nolasco, G., and O.A. De Sequeira. 1993. Immunocapture polymerase chain reaction (IC/PCR) in the diagnosis of grapevine fanleaf virus (GFLV) in grapevine field samples. In Extended abstracts 11th meeting of ICVG, Montreux, Switzerland, 31–32.

    Google Scholar 

  • Nölke, G., R. Fischer, and S. Schillberg. 2004. Antibody-based pathogen resistance in plants. Journal of Plant Pathology 86: 6–17.

    Google Scholar 

  • Nölke, G., P. Cobanov, K. Uhde-Holzem, G. Reustle, R. Fischer, and S. Schillberg. 2009. Grapevine fanleaf virus (GFLV)-specific antibodies confer GFLV and Arabis mosaic virus (ArMV) resistance in Nicotiana benthamiana. Molecular Plant Pathology 10: 41–49.

    Article  PubMed  Google Scholar 

  • O’Bannon, J.H., and J.N. Inserra. 1990. Nematode vectors-transmission of plant viruses. Nematology Circular 178: 4.

    Google Scholar 

  • Oliver, J.E., and M. Fuchs. 2011. Tolerance and resistance to viruses and their vectors in Vitis sp.: A virologist’s perspective of the literature. American Journal of Enology and Viticulture 62: 438–451.

    Article  Google Scholar 

  • Oliver, J.E., E. Vigne, and M. Fuchs. 2010. Genetic structure and molecular variability of Grapevine fanleaf virus populations. Virus Research 152: 30–40.

    Article  CAS  PubMed  Google Scholar 

  • Osman, F., C. Leutenegger, D.A. Golino, and A. Rowhani. 2008. Comparison of low-density arrays, RT-PCR and real-time TaqMan RT-PCR in detection of grapevine viruses. Journal of Virological Methods 149: 292–299.

    Article  CAS  PubMed  Google Scholar 

  • Ouertani, R., V. Savino, A. Minafra, D. Boscia, M.A. Castellano, G.P. Martelli, and N. Greco. 1992. Properties of a previously undescribed grapevine nepovirus from Tunisia. Archives of Virology 126: 107–117.

    Google Scholar 

  • Panjan, M., and A. Saric. 1963. Seroloska ispitivanja Arabis mosaic virusa u vinovejlozi i tresnji geldifuzionom metodom. Agronomski glasnik 3: 204–206.

    Google Scholar 

  • Petri, L. 1913. Sul significato patologico dei cordoni endocellulari nei tessuti della vite. Rendiconti della Reale Accademia dei Lincei, Ser.V 22: 154–161.

    Google Scholar 

  • Pinck, L. 1998. Grapevine nepovirus proteinase. In Handbook of proteolytic enzymes, ed. A.J. Barrett and J.F. Woessner, 719–720. London: Academic.

    Google Scholar 

  • Pinck, L., M. Fuchs, M. Pinck, M. Ravelonandro, and B.A. Walter. 1988. Satellite RNA in grapevine fanleaf virus strain F13. Journal of General Virology 69: 233–239.

    Article  CAS  Google Scholar 

  • Pinck, M., J. Reibolt, A.M. Loudes, M. Loret, and L. Pinck. 1991. Primary structure and location of genome-linked protein (VPg) of Grapevine fanleaf nepovirus. FEBS Letters 284: 117–119.

    Article  CAS  PubMed  Google Scholar 

  • Pompe-Novak, M., I. Gutiérrez-Aguirre, J. Vojvoda, M. Blas, I. Tomazic, E. Vigne, M. Fuchs, M. Ravnikar, and N. Petrovic. 2007. Genetic variability within RNA2 of grapevine fanleaf virus. European Journal of Plant Pathology 117: 307–312.

    Article  CAS  Google Scholar 

  • Ramsdell, D.C., and R.L. Myers. 1978. Epidemiology of peach rosette mosaic virus in a Concord grape vineyard. Phytopathology 68: 447–450.

    Article  Google Scholar 

  • Ramsdell, D.C., and R. Stace-Smith. 1981. Physical and chemical properties of the particles and ribonucleic acid of Blueberry leaf mottle virus. Phytopathology 71: 468–472.

    Article  CAS  Google Scholar 

  • Raski, D.J. 1955. Additional observations on the nematodes attacking grapevines and their control. American Journal of Enology and Viticulture 6: 29–31.

    Google Scholar 

  • Raski, D.J., A.C. Goheen, L.A. Lider, and C.P. Meredith. 1983. Strategies against Grapevine fanleaf virus and its nematode vector. Plant Disease 67: 335–339.

    Article  Google Scholar 

  • Reustle, G.M., R. Ebel, P. Winterhagen, T. Manthey, C. Dubois, A. Bassler, M. Sinn, P. Cobanov, T. Wetzel, G. Krczal, R. Jardak-Jamoussi, and A. Ghorbel. 2005. Induction of silencing in transgenic grapevines (Vitis sp.). Acta Horticulturae 689: 521–528.

    Article  CAS  Google Scholar 

  • Reustle, G.M., P. Winterhagen, R. Jardak-Jamoussi, P.I. Cobanov, C. Dubois, T. Manthey, T. Wetzel, A. Ghorbel, G. Brendel, U. Ipach, and G. Krczal. 2006. Resistance against nepoviruses: Molecular and biological characterisation of transgenic tobacco and grapevine plants. In Extended abstacts 15th meeting of ICVG, Stellenbosch, South Africa, 59–60.

    Google Scholar 

  • Ritzenthaler, C., M. Viry, M. Pinck, R. Margis, M. Fuchs, and L. Pinck. 1991. Complete nucleotide sequence and organization of grapevine fanleaf nepovirus RNA1. Journal of General Virology 72: 2357–2365.

    Article  CAS  PubMed  Google Scholar 

  • Ritzenthaler, C., A.C. Schmit, P. Michler, C. Stussi-Garaud, and L. Pinck. 1995. Grapevine fanleaf nepovirus P38 putative movement protein is located on tubules in vivo. Molecular Plant Microbe Interaction 8: 379–387.

    Article  CAS  Google Scholar 

  • Ritzenthaler, C., C. Laporte, F. Gaire, P. Dunoyer, C. Schmitt, S. Duval, A. Piequet, A.M. Loudes, O. Rohfritsch, C. Stussi-Garaud, and P. Pfeiffer. 2002. Grapevine fanleaf virus replication occurs on endoplamic reticulum-derived membranes. Journal of Virology 17: 8808–8819.

    Article  CAS  Google Scholar 

  • Roberts, I.M., and D.J.F. Brown. 1980. Detection of six nepoviruses in their nematode vectors by immunosorbent electron microscopy. Annals of Applied Biology 96: 187–192.

    Article  Google Scholar 

  • Rott, M.E., J.H. Tremaine, and D.M. Rochon. 1991. Comparison of the 5′ and 3′ termini of tomato ringspot virus RNA-1 and RNA-2: Evidence for RNA recombination. Virology 185: 468–472.

    Article  CAS  PubMed  Google Scholar 

  • Rowhani, A. 1992. Use of F(ab’) 2 antibody fragment in ELISA for detection of grapevine viruses. American Journal of Enology and Viticulture 43: 38–40.

    Google Scholar 

  • Rowhani, A., C. Chay, D.A. Golino, and B.W. Falk. 1993. Development of a polymerase chain reaction technique for the detection of grapevine fanleaf virus in grapevine tissue. Phytopathology 83: 749–753.

    Article  CAS  Google Scholar 

  • Rowhani, A., F. Osman, and D.A. Golino. 2003. Development of a detection and quantification TaqMan assay method for grapevine viruses using real time one-step RT-PCR. In Extended abstacts 14th meeting of ICVG, Locorotondo-Bari, Italy, 194.

    Google Scholar 

  • Rowhani, A., J.K. Uyemoto, D.A. Golino, and G.P. Martelli. 2005. Pathogen testing and certification of Vitis and Prunus species. Annual Review of Phytopathology 43: 261–278.

    Article  CAS  PubMed  Google Scholar 

  • Rüdel, M. 1977. Übertragung des Tomatenschwarzringflecken-Virus (tomato black ring virus) durch den Nematoden Longidorus attenuatus (Nematoda) auf Reben und andere Pflanzenarten. Wein-Wissenschaft 32: 11–24.

    Google Scholar 

  • ———. 1992. Nepoviruses of grapevine and their nematode vectors in the EEC. In Grapevine viruses and certification in EEC countries: State of the art, Quaderno No. 3, ed. G.P. Martelli, 23–39. Bari: Istituto Agronomico Mediterraneo.

    Google Scholar 

  • Rüdel, M., M. Alebrand, and B. Altmayer. 1983. Untersuchungen über den Einsatz des ELISA-tests zum Nachweis verschiedener Rebviren. Wein- Wissenschaft 38: 177–185.

    Google Scholar 

  • Russo, M., G.P. Martelli, and V. Savino. 1982. Immunosorbent electron microscopy for detecting sap-transmissible viruses of grapevine. In Proceedings 7th meeting of ICVG, Niagara Falls, Canada, 251–257.

    Google Scholar 

  • Saldarelli, P., A. Minafra, and B. Walter. 1993. A survey of Grapevine fanleaf nepovirus isolates for the presence of satRNA. Vitis 32: 99–102.

    CAS  Google Scholar 

  • Sanfaçon, H. 2008. Nepovirus. In Encyclopedia of virology, ed. B.W.J. Mahy and M.H. Van Regenmortel, 405–413. Oxford: Elsevier.

    Chapter  Google Scholar 

  • Sanfaçon, H., T. Iwanami, A.V. Karasev, R. van der Vlugt, J. Wellink, T. Wetzel, and N. Yoshikawa. 2012. Family Secoviridae. In Virus taxonomy, Ninth Report of the International Committee on the Taxonomy of Viruses, ed. A.M.Q. King, M.J. Adams, E.B. Carstens, and E.J. Lefkowitz, 881–899. Amsterdam: Elsevier/Academic.

    Google Scholar 

  • Savino, V., D. Gallitelli, M. Jankulova, and G.L. Rana. 1976. A comparison of four isolates of Artichoke Italian latent virus (AILV). Phytopathologia Mediterranea 16: 41–50.

    Google Scholar 

  • Schellenberger, P., P. Andret-Link, C. Schmitt-Keichinger, M. Bergdoll, A. Marmonier, E. Vigne, O. Lemaire, M. Fuchs, G. Demangeat, and C. Ritzenthaler. 2010. A stretch of 11 amino acids in the B-C loop of the coat protein of grapevine fanleaf virus is essential for transmission by the nematode Xiphinema index. Journal of Virology 84: 7924–7933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelzer, K. 1963. Untersuchungen an viren der zier- und wildgehölze: 3. Mitteilung: virosen an Robinia, Caryopteris, Ptelea und anderen Gattungen. Phytopathologische Zeitschrift 46: 235–268.

    Article  Google Scholar 

  • Scott, N.W., J.I. Cooper, Y.Y. Liu, and C.U.T. Helen. 1992. A 1.5 kb sequence homology in the 3-terminal regions of RNA-1 and RNA-2 of a birch isolate of cherry leaf roll nepovirus is also present, in part, in a rhubarb isolate. Journal of General Virology 73: 481–485.

    Article  CAS  PubMed  Google Scholar 

  • Serghini, M.A., M. Fuchs, M. Pinck, J. Reinbolt, B. Walter, and L. Pinck. 1990. RNA2 of grapevine fanleaf virus: Sequence analysis and coat protein cistron location. Journal of General Virology 71: 1433–1441.

    Article  CAS  PubMed  Google Scholar 

  • Staudt, G., and B. Weischer. 1992. Resistance to transmission of grapevine fanleaf virus by Xiphinema index in Vitis rotundifolia and Vitis munsoniana. Wein-Wissenschaft 47: 56–61.

    Google Scholar 

  • Stellmach, G., and R. Bercks. 1963. Untersuchungen an Rebenviroses: Nachweis des Tomaten schwarzringflecken-Virus (tomato blackring virus) in kranken Stocken der Sorte Aramon x Riparia 143 A M.G. (Amerikenerrebe). Phytopathologische Zeitschrift 48: 200–202.

    Article  Google Scholar 

  • Stellmach, G., and R.E. Berres. 1985. Investigations on mixed infections of nepoviruses in Vitis spp. and Chenopodium quinoa Willd. by means of ELISA. Phytopathologia Mediterranea 24: 125–128.

    Google Scholar 

  • ———. 1986. Begrenzte Infektionsanfälligkeit der Vitis vinifera-Sorte ‘Kerner’ gegenüber dem Arabismosaik-Virus? Zeitschrift für Pflanzenkrankeiten und Pflanzenschutz 93: 356–360.

    Google Scholar 

  • Stobbs, L.W., and J.G. Van Schagen. 1985. Relationship between grapevine Joannes-Seyve virus and tomato black ring virus. Canadian Journal of Plant Pathology 7: 37–40.

    Google Scholar 

  • Szychowski, J.A., M.V. McKenry, M.A. Walker, J.A. Wolpert, R. Credi, and J.S. Semancik. 1995. The vein-banding disease syndrome: A synergistic reaction between grapevine viroids and fanleaf virus. Vitis 34: 229–232.

    Google Scholar 

  • Tanne, E. 1980. The use of ELISA for the detection of some NEPO viruses in grapevines. In Proceedings 7th meeting of ICVG, Niagara Falls, Ontario, Canada, 293–296.

    Google Scholar 

  • Taylor, C.E., and D.J.F. Brown. 1997. Nematode vectors of plant viruses. Wallingford: CAB International.

    Google Scholar 

  • Taylor, R.H., and W.B. Hewitt. 1964. Properties and serological relationships of Australian and Californian soil-borne viruses of the grapevine and Arabis mosaic virus. Australian Journal of Agricultural Research 15: 571–585.

    Article  Google Scholar 

  • Taylor, C.E., and D.J. Raski. 1964. On the transmission of grapevine fanleaf by Xiphinema index. Nematologica 10: 489–495.

    Article  Google Scholar 

  • Taylor, C.E., and W.M. Robertson. 1969. The location of raspberry ringspot and tomato black ring viruses in the nematode vector, Longidorus elongatus. Annals of Applied Biology 64: 233–237

    Google Scholar 

  • ———. 1970. Sites of virus retention in the alimentary tract of the nematode vectors, Xiphinema diversicaudatum (Micol.) and X. index (Thorne and Allen). Annals of Applied Biology 66(3): 375–380

    Google Scholar 

  • Tzanetakis, I.E., J.D. Postman, R.C. Gergerich, and R.R. Martin. 2006. A virus between families: Nucleotide sequence and evolution of Strawberry latent ringspot virus. Virus Research 121: 199–204.

    Article  CAS  PubMed  Google Scholar 

  • Vigne, E., M. Bergdoll, S. Guyader, and M. Fuchs. 2004a. Population structure and genetic variability within isolates of grapevine fanleaf virus from a naturally infected vineyard in France: Evidence for mixed infection and recombination. Journal of General Virology 85: 2435–2445.

    Article  CAS  PubMed  Google Scholar 

  • Vigne, E., V. Komar, and M. Fuchs. 2004b. Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus. Transgenic Research 13: 165–179.

    Article  CAS  PubMed  Google Scholar 

  • Vigne, E., A. Marmonier, and M. Fuchs. 2008. Multiple interspecies recombination events within RNA2 of Grapevine fanleaf virus and Arabis mosaic virus. Archives of Virology 153: 1771–1776.

    Article  CAS  PubMed  Google Scholar 

  • Vuittenez, A., J. Kuszala, M. Rüdel, and H. Brückbauer. 1970. Détection et étude selogique du virus latent des taches annulaires du frasier (strawberry latent ringspot), du virus des anneaux noires de la tomate (tomato black ring) et du virus des taches annulaires du framboisier (Raspberry ringspot) chez des vignes du Palatinat. Annales de Phytopathologie 2: 279–327.

    Google Scholar 

  • Walker, M.A., and Y. Jin. 2000. Breeding Vitis rupestris × Muscadinia rotundifolia rootstocks to control Xiphinema index and fanleaf degeneration. Acta Horticulturae 528: 517–522.

    Article  Google Scholar 

  • Walker, M.A., and C.P. Meredith. 1990. The genetic of resistance to Grapevine fanleaf virus in Vitis vinifera. In Proceedings 5th international symposium on grape breeding, St. Martin/Pfalz, Germany, 228–238.

    Google Scholar 

  • Walker, M.A., C.P. Meredith, and A.C. Goheen. 1985. Sources of resistance to grapevine fanleaf virus (GFV) in Vitis species. Vitis 24: 218–228.

    Google Scholar 

  • Walker, M.A., J.A. Wolpert, and E. Weber. 1994. Viticultural chracteristics of VR hybrid rootstocks in a vineyard site infected with grapevine fanleaf virus. Vitis 33: 19–23.

    Google Scholar 

  • Walter, B., J. Kuszala, and A. Vuittenez. 1979. Diagnostic sérologique par les tests PALLAS et ELISA. Application aux virus de la rhizomanie de la betterave et du court-noué de la vigne. Annales de Phytopathologie 11: 568–569.

    Google Scholar 

  • Wei, T., and G. Clover. 2008. Use of primers with 5′ non-complementary sequences in RT-PCR for the detection of nepovirus subgroups A and B. Journal of Virological Methods 153: 16–21.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel, T., L. Meunier, U. Jaeger, G.M. Reustle, and G. Krczal. 2001. Complete nucleotide sequence ot the RNA 2 of German isolates of grapevine fanleaf and arabis mosaic nepoviruses. Virus Research 75: 129–145.

    Article  Google Scholar 

  • Wetzel, T., R. Jardak, L. Meunier, A. Ghorbel, G.M. Reustle, and G. Krczal. 2002. Simultaneous RT-PCR detection and differentiation of arabis mosaic 332 and grapevine fanleaf nepoviruses in grapevines with a single pair of primers. Journal of Virological Methods 101: 63–69.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel, T., R. Ebel, B. Moury, O. Le Gall, S. Endisch, G.M. Reustle, and G. Krczal. 2006. Sequence analysis of grapevine isolates of Raspberry ringspot nepovirus. Archives of Virology 151: 599–606.

    Article  CAS  PubMed  Google Scholar 

  • Worobey, M., and E.C. Holmes. 1999. Evolutionary aspects of recombination in RNA viruses. Journal of General Virology 80: 2535–2543.

    Article  CAS  PubMed  Google Scholar 

  • Wyss, U. 2000. Xiphinema index, maintenance, and feeding in monoxenic cultures. In Maintenance of human, animal and plant pathogen vectors, ed. K. Maramorosch and F. Mahmood, 251–281. Enfield: Science Publishers.

    Google Scholar 

  • Zakiaghl, M., K. Izadpanah, Z. Gholampour, M. Kargar, and M. Mehrvar. 2015. Molecular characterization of Grapevine fan leaf virus from non Vitis hosts. In Proceedings 18th meeting of ICVG, Ankara, Turkey, 149–150

    Google Scholar 

  • Zarghani, S.N., M. Shams-Bakhsh, N.S. Bashir, and T. Wetzel. 2013. Molecular characterization of whole genomic RNA2 from Iranian isolates of Grapevine fanleaf virus. Journal of Phytopathology 161: 419–425.

    Article  CAS  Google Scholar 

  • Zarghani, S.N., L. Dupuis-Maguiraga, A. Bassler, and T. Wetzel. 2014. Mapping of the exchangeable and dispensable domains of the RNA2-encoded 2AHP protein of Arabis mosaic nepovirus. Virology, 458–459.

    Google Scholar 

  • Zhang, G., and H. Sanfaçon. 2006. Characterization of membrane association domains within the tomato ringspot nepovirus X2 protein, an endoplasmic reticulum-targeted polytopic membrane protein. Journal of Virology 80: 10847–10857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Digiaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Digiaro, M., Elbeaino, T., Martelli, G.P. (2017). Grapevine fanleaf virus and Other Old World Nepoviruses. In: Meng, B., Martelli, G., Golino, D., Fuchs, M. (eds) Grapevine Viruses: Molecular Biology, Diagnostics and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-57706-7_3

Download citation

Publish with us

Policies and ethics