Skip to main content

About the Use of Recycled or Biodegradable Filaments for Sustainability of 3D Printing

State of the Art and Research Opportunities

  • Conference paper
  • First Online:

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 68))

Abstract

Additive Manufacturing (AM) and 3D printing are drivers for material savings in manufacturing. Owing to the continuous diffusion of 3D printing driven by low-cost entry-level material extrusion printers, sustainability of a so popular AM technology is of paramount importance. Therefore, recycling 3D printed wastes and 3D parts again at the end of their life is an important issue to be addressed. Research efforts are directed towards the improvement of the biodegradability of 3D printing filaments and the replacement of oil based feedstock with bio-based compostable plastics. The aim of this work is to describe the state of the art about development and use of recycled or biodegradable filaments in 3D printing. Beyond a critical review of the literature, open issues and research opportunities are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. European Union action on circular economy. http://ec.europa.eu/environment/circular-economy/index_en.htm

  2. Kohtala, C.: Addressing sustainability in research on distributed production: an integrated literature review. J. Clean. Prod. 106, 654–668 (2015)

    Article  Google Scholar 

  3. Hopewell, J., Drovak, R., Kosior, E.: Plastics recycling: challenges and opportunities. Philos. Trans. R. Soc. B, 364(1526), 2115–2126 (2009)

    Google Scholar 

  4. Calignano, F., Manfredi, D., Ambrosio, E.P., Biamino, S., Lombardi, M., Atzeni, E., Salmi, A., Minetola, P., Iuliano, L., Fino, P.: Overview on additive manufacturing technologies. Proc. IEEE 105(4), 593–612 (2017)

    Article  Google Scholar 

  5. Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C., Bowyer, A.: RepRap – the replicating rapid prototyper. Robotica 29(1), 177–191 (2011)

    Google Scholar 

  6. ISO/ASTM Standard, 52900:2015 – Additive manufacturing – General principles: Terminology

    Google Scholar 

  7. McAlister, C., Wood, J.: The potential of 3D printing to reduce the environmental impacts of production. Eceee Ind. Summer Study Proc. 2(72), 213–221 (2014)

    Google Scholar 

  8. Gebler, M., Schoot Uiterkamp, A.J.M., Visser, C.: A global sustainability perspective on 3D printing technologies. Energy Policy 74, 158–167 (2014)

    Google Scholar 

  9. Li, T., Aspler, J., Kingsland, A., Cormier, L.M., Zou, X.: 3d printing – a review of technologies, markets, and opportunities for the forest industry. J. Sci. Technol. For. Prod. Process. 5(2), 30 (2016)

    Google Scholar 

  10. Enviro ABS. https://threedmaterials.com/products/enviro-abs-filament-1-75mm-blue

  11. Stephens, B., Azimi, P., Orch, Z.E., Ramos, T.: Ultrafine particle emissions from desktop 3D printers. Atmos. Environ. 79, 334–339 (2013)

    Article  Google Scholar 

  12. Steinle, P.: Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings. J. Occup. Environ. Hygiene 13(2), 121–132 (2016)

    Google Scholar 

  13. Duran, C., Subbian, V., Giovanetti, M.T., Simkins, J.R., Beyette Jr., F.R.: Experimental desktop 3D printing using dual extrusion and water-soluble polyvinyl alcohol. Rapid Prototyp. J. 21(5), 528–534 (2015)

    Google Scholar 

  14. B-PET Filament, http://bpetfilament.com/

  15. Chia, H.N., Wu, B.M.: Recent advances in 3D printing of biomaterials. J. Biol. Eng. 4(9), 1–14 (2015)

    Google Scholar 

  16. Serra, T., Planell, J.A., Navarro, M.: High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 9, 5521–5530 (2013)

    Article  Google Scholar 

  17. Melocchi, A., Parietti, F., Loreti, G., Maroni, A., Gazzaniga, A., Zema, L.: 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J. Drug Delivery Sci. Technol. 30, 360–367 (2015). Part B

    Google Scholar 

  18. Pietrzak, K., Isreb, A., Alhnan, M.A.: A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur. J. Pharm. Biopharm. 96, 380–387 (2015)

    Article  Google Scholar 

  19. Salminen, A., Seppälä, J.: 3D printing of thermoplastic cellulose derivatives. In: Design Driven Value Chains in the World of Cellulose project report 1, pp. 48–49 (2016)

    Google Scholar 

  20. Kuo, C.C., Liu, L.C., Teng, W.F., Chang, H.Y., Chien, F.M., Liao, S.J., Kuo, W.F., Chen, C.M.: Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Compos. B 86, 36–39 (2016)

    Article  Google Scholar 

  21. David, C., Athina, P., Christophe, G., Nynika, J., Steffen, R., Achim, M., Skylar, T.: 3D-printed wood: programming hygroscopic material transformations. 3D Print. Addit. Manuf. 2(3), 106–116 (2015)

    Google Scholar 

  22. Duigou, A.L., Castro, M., Bevanc, R., Martin, N.: 3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Mater. Des. 96, 106–114 (2016)

    Article  Google Scholar 

  23. Zhang, D., Chi, B., Li, B., Gao, Z., Du, Y., Guo, J., Wei, J.: Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth. Met. 217, 79–86 (2016)

    Article  Google Scholar 

  24. Ceccolini, M.: https://www.behance.net/gallery/24616719/agridust-biodegradable-material

  25. S3D Innovations. http://s3dinnovations.wixsite.com/filasoy

  26. Cantrell, J., Rohde, S., Damiani, D., Gurnani, R., DiSandro, L., Anton, J., Young, A., Jerez, A., Steinbach, D., Kroese, C., Ifju, P.: Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Adv. Opt. Methods Exp. Mech. 3, 89–105 (2016)

    Google Scholar 

  27. Letcher T.: Material Property Testing of 3D printed Specimen in PLA on an Entry level 3D printer, In: proceedings of the ASME 2014 International Mechanical Engineering Congress & Exposition (2014)

    Google Scholar 

  28. Cruz, F., Lanza, S., Boudaoud, H., Hoppe, S., Camargo, M.: Polymer recycling and additive manufacturing in an open source context: optimization of processes and methods. In: 2015 Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, Austin, Texas (USA), 10–12 August 2015

    Google Scholar 

  29. Gkartzou, E., Koumoulos, E.P., Charitidis, C.A.: Production and 3D printing processing of bio-based thermoplastic filament. Manuf. Rev. 4(1), 14 (2017)

    Google Scholar 

  30. Hamod, H.: Suitability of recycled HDPE for 3D printing filament. B.Sc Thesis. Arcada University of Applied Science, Helsinki (2014)

    Google Scholar 

  31. Markstedt, K., Sundberg, J., Gatenholm, P.: 3D bioprinting of cellulose structures from an ionic liquid. 3D Print. Addit. Manuf. 1(3), 115–121 (2014)

    Google Scholar 

  32. Business Wire. http://www.businesswire.com/news/home/20160325005103/en/Global-3D-Printing-Plastic-Market-Worth-USD

  33. Al-Salem, S.M., Lettieri, P., Baeyens, J.: Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manage. 29, 2625–2643 (2009)

    Article  Google Scholar 

  34. Perugini, F., Mastellone, M., Arena, U.: A life cycle assessment of mechanical and feedstock recycling options for management of plastic packaging wastes. Environ. Progr. 24, 137–154 (2005)

    Article  Google Scholar 

  35. Hopewell, J., Dvorak, R., Kosior, E.: Plastics recycling: challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 364(1526), 2115–2126 (2009)

    Google Scholar 

  36. Zenkiewicz, M., Richert, J., Rytlewski, P., Moraczewski, K., Stepczyńska, M., Karasiewicz, T.: Characterisation of multi-extruded poly(lactic acid). Polymer Test. 28(4), 412–418 (2009)

    Google Scholar 

  37. Pillin, I., Montrelay, N., Bourmaud, A., Grohens, Y.: Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid). Polymer Degrad. Stab. 93(2), 321–328 (2008)

    Google Scholar 

  38. Kreiger, M.A., Mulder, M.L., Glover, A.G., Pearce, J.M.: Life cycle analysis of distributed recycling of post-consumer high density polyethylene for 3-D printing filament. J. Cleaner Prod. 70, 90–96 (2014)

    Article  Google Scholar 

  39. Baechler, C., DeVuono, M., Pearce, J.M.: Distributed recycling of waste polymer into RepRap feedstock. Rapid Prototyp. J. 19(2), 118–125 (2013)

    Google Scholar 

  40. Torres, N., Robin, J.J., Boutevin, B.: Study of thermal and mechanical properties of virgin and recycled poly(ethylene terephthalate) before and after injection molding. Eur. Polymer J. 36, 2075–2080 (2000)

    Article  Google Scholar 

  41. Hunt, E.J., Zhang, C., Anzalone, N., Pearce, J.M.: Polymer recycling codes for distributed manufacturing with 3-D printers. Resour. Conserv. Recycl. 97, 24–30 (2015)

    Article  Google Scholar 

  42. Chong, S., Chiub, H., Liao, Y., Hung, S., Pan, G.: Cradle to cradle® design for 3D printing. Chem. Eng. Trans. 45, 1669–1674 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Pakkanen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pakkanen, J., Manfredi, D., Minetola, P., Iuliano, L. (2017). About the Use of Recycled or Biodegradable Filaments for Sustainability of 3D Printing. In: Campana, G., Howlett, R., Setchi, R., Cimatti, B. (eds) Sustainable Design and Manufacturing 2017. SDM 2017. Smart Innovation, Systems and Technologies, vol 68. Springer, Cham. https://doi.org/10.1007/978-3-319-57078-5_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57078-5_73

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57077-8

  • Online ISBN: 978-3-319-57078-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics