Skip to main content

Numerical Solution of One-Dimensional Stationary Schrödinger Equation in the Frequency Domain

  • Conference paper
  • First Online:
  • 1317 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 195))

Abstract

A new numerical method for solving of one-dimensional stationary Schrödinger equation has been developed. The method is based on the Fourier transformation of the wave equation. As a result, an integral equation has been obtained where the integral is replaced by the summation, and problem has been transformed in the eigenvalue/eigenvector problem which corresponds to discrete energy levels as well as the Fourier transform of wave functions. The wave function has been obtained by the usage of the inverse Fourier transformation. It is shown that discrete energy levels are split and form the forbidden and permitted zones for the one-dimensional finite crystal. The all discrete energy levels and corresponding Fourier transform of the wave functions were obtained by one series of computer calculations if the number of energy levels is finite. The method is characterized by high accuracy and stability of search of the discrete levels of energy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. West LC, Eglash SJ (1985) First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well. Appl Phys Lett 46(12):1156–1158

    Article  ADS  Google Scholar 

  2. Faist J, Capasso F, Hutchnson AL, Pfeiffer L, West KW (1993) Suppression of optical absorption by electric-field induced quantum interference in coupled potential wells. Phys Rev Lett 71(1):3573–3576

    Article  ADS  Google Scholar 

  3. Levine BF (1993) Quantum well infrared photodetectors. J Appl Phys 74:R1–R81

    Article  ADS  Google Scholar 

  4. Faist J, Capasso P, Sivco DL, Sirtori C, Hutchnson AL, Cho AY (1994) Quantum cascade lasers. Science 264:553–556

    Article  ADS  Google Scholar 

  5. Noda S, Yamashita T, Ohya M, Muromoto Y, Sasaki A (1993) All-optical modulation for semiconductor lasers by using three energy levels in n-doped quantum wells. IEEE J Quantum Electron 29(6):1640–1647

    Article  ADS  Google Scholar 

  6. Bastard G (1988) Wave mechanics applied to semiconductor heterostructures. Les editions de physique, Les Ulis

    Google Scholar 

  7. Vakarchuk IO (2004) Quantum mechanics. Ivan Franko National University of Lviv, Lviv, (in Ukrainian)

    Google Scholar 

  8. Caticha A (1995) Construction of exactly soluble double-well potentials. Phys Rev A 51(5):4264–4267

    Article  ADS  Google Scholar 

  9. Dutra AS (1993) Conditionally exactly soluble class quantum potentials. Phys Rev A 47(4):R2435–R2437

    Article  ADS  Google Scholar 

  10. Tkachuk VM, Fityo TV (2003) Multidimensional quasi-exactly solvable potentials with two known eigenstates. Phys Lett A 309(5–6):351–356

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Gedeon A (1974) Comparison between rigorous theory and WKB-analysis of modes in graded-index waveguides. Opt Commun 12(3):329–332

    Article  ADS  Google Scholar 

  12. Smith RE, Houde-Walter SN, Forbes GW (1990) Mode determination for planar waveguide using the four-sheeted dispersion relation. J. Quantum Electron 26(4):627–630

    Article  ADS  Google Scholar 

  13. Anemogiannis E, Glytsis EN (1992) Multilayer waveguides: efficient numerical analysis of general structures. J Lightwave Technol 10(10):1344–1351

    Article  ADS  Google Scholar 

  14. Chatak AK, Thyaagarajan K, Shenoy MR (1987) Numerical analysis of planar optical waveguides using matrix approach. J Lightwave Technol 5(5):660–667

    Article  ADS  Google Scholar 

  15. Baba T, Kokubun Y (1992) Dispersion radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions. J Quantum Electron 28(7):1689–1700

    Article  ADS  Google Scholar 

  16. Rganov AG, Grigas SE (2010) Numerical algorithm for waveguide and leaky modes determination in multilayer optical waveguides. Tech Phys 55(11):1614–1618

    Article  Google Scholar 

  17. Fitio VM, Romakh VV, Bobitski YV (2014) Numerical method for analysis of waveguide modes in planar gradient waveguides. Material Science (Medžiagotyra) 20(3):256–261

    Google Scholar 

  18. Fitio VM, Romakh VV, Bartkiv LV, Bobitski YV (2016) The accuracy of computation of mode propagation constants for planar gradient waveguides in the frequency domain. Mater Sci Eng Technol (Materialwissenschaft und Werkstofftechnik) 47(2–3):237–245

    Google Scholar 

  19. Meškinis Š, Čiegis A, Vasiliauskas A, Šlapikas K, Gudaitis R, Yaremchuk I, Fitio V, Bobitski Y, Tamulevičius S (2016) Annealing effects on structure and optical properties of diamond-like carbon films containing silver. Nanoscale Res Lett 11:146. doi:10.1186/s11671-016-1362-4

    Article  ADS  Google Scholar 

  20. Yaremchuk I, Tamulevicius T, Fitio V, Grazuleviciute I, Bobitski Y, Tamulevicius S (2013) Guide-mode resonance characteristics of periodic structure on base of diamond-like carbon film. Opt Commun 301:1–6

    Article  ADS  Google Scholar 

  21. Smirnova N, Sakhno O, Fitio V, Gritsai Y, Stumpe J (2014) Simple and high performance DFB laser based on dye-doped nanocomposite volume gratings. Laser Phys Lett 11(5):125814–1 – 8

    Google Scholar 

  22. Smirnova TN, Sakhno OV, Stumpe J, Fitio VM (2016) Polymer distributed feedback dye laser with an external volume Bragg grating inscribed in a nanocomposite by holographic technique. JOSA B 33(2):202–210

    Article  ADS  Google Scholar 

  23. Fitio VM, Yaremchuk IY, Romakh VV, Bobitski YV (2015) A solution of one-dimensional stationary Schrödinger equation by the Fourier transform. Appl Comput Electromagn Soc 30(5):534–539

    Google Scholar 

  24. Goodman JW (1968) Introduction to fourier optics. McGraw-Hill Book Company, San Francisco

    Google Scholar 

  25. Yariv A (1975) Quantum electronics. John Wiley and Sons, New York

    Google Scholar 

  26. Kittel C (1978) Introduction to solid state physics, 4th edn. John Wiley and Sons, Inc., New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Fitio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fitio, V.M., Yaremchuk, I.Y., Romakh, V.V., Bobitski, Y.V. (2017). Numerical Solution of One-Dimensional Stationary Schrödinger Equation in the Frequency Domain. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications . NANO 2016. Springer Proceedings in Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-56422-7_1

Download citation

Publish with us

Policies and ethics