Skip to main content

High Definition Method for Imaging Bacteria in Microconfined Environments on Solid Media

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10209))

Included in the following conference series:

  • 1825 Accesses

Abstract

In this paper, the methods and devices used to confine, observe and characterize the growth of bacteria on an agar based nutrient media are described. Selected strain E. coli MG1655 [1, 2] was successfully inoculated in a confinement structure composed of a microchannel (7 μm × 60 μm × 6.345 mm) with two culture chambers of 3 mm in diameter on both ends. The microchannel was fabricated on a standard microscope glass slide using a mask-less photolithographic technique and chemical etching. Isolation and manipulation of the confined bacteria was achieved by means of a custom designed 3D printed test cell. Observation was performed on an optical transmission microscope enhanced with a customized automation system. Growth characterization was performed by calculating the surface area colonized by the bacteria through image processing and analysis. The discussion focuses on the comparison of the growth rate within the confinement structure compared to traditional cell counting methods and the description of an observed, but inconsistent, scouting behavior. Finally, we discuss on the possible uses of the reported work and extend a call for introducing this system in current bacteriology research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayashi, K., Morooka, N., Yamamoto, Y., Fujita, K., Isono, K., Choi, S., Ohtsubo, E., Baba, T., Wanner, B.L., Mori, H.: Highly accurate genome sequences of Escherichia coli K‐12 strains MG1655 and W3110. Mol. Syst. Biol. 2 (2006)

    Google Scholar 

  2. Sezonov, G., Joseleau-Petit, D., D’Ari, R.: Escherichia coli physiology in Luria-Bertani broth. J. Bacteriol. 189, 8746–8749 (2007)

    Article  Google Scholar 

  3. Hol, F.J.H., Dekker, C.: Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria. Science 346, 1251821 (2014). doi:10.1126/science.1251821

    Article  Google Scholar 

  4. Weibel, D.B., Diluzio, W.R., Whitesides, G.M.: Microfabrication meets microbiology. Nat. Rev. Microbiol. 5, 209–218 (2007). doi:10.1038/nrmicro1616

    Article  Google Scholar 

  5. Norman, T.M., Lord, N.D., Paulsson, J., Losick, R.: Memory and modularity in cell-fate decision making. Nature 503, 481–486 (2013)

    Article  Google Scholar 

  6. Biondi, S.A., Quinn, J.A., Goldfine, H.: Random motility of swimming bacteria in restricted geometries. AIChE J. 44, 1923–1929 (1998). doi:10.1002/aic.690440822

    Article  Google Scholar 

  7. Frymier, P.D., Ford, R.M.: Analysis of bacterial swimming speed approaching a solid–liquid interface. AIChE J. 43, 1341–1347 (1997). doi:10.1002/aic.690430523

    Article  Google Scholar 

  8. Lauga, E., DiLuzio, W.R., Whitesides, G.M., Stone, H.A.: Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90, 400–412 (2006). doi:10.1529/biophysj.105.069401

    Article  Google Scholar 

  9. Ramia, M., Tullock, D.L., Phan-Thien, N.: The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys. J. 65, 755–778 (1993). doi:10.1016/S0006-3495(93)81129-9

    Article  Google Scholar 

  10. Ko, H., Lee, J.S., Jung, C.-H., Choi, J.-H., Kwon, O.-S., Shin, K.: Actuation of digital micro drops by electrowetting on open microfluidic chips fabricated in photolithography. J. Nanosci. Nanotechnol. 14, 5894–5897 (2014)

    Article  Google Scholar 

  11. Gao, J., Manard, B.T., Castro, A., Montoya, D.P., Xu, N., Chamberlin, R.M.: Solid-phase extraction microfluidic devices for matrix removal in trace element assay of actinide materials. Talanta 167, 8–13 (2017). doi:10.1016/j.talanta.2017.01.080

    Article  Google Scholar 

  12. Fukuba, T., Yamamoto, T., Naganuma, T., Fujii, T.: Microfabricated flow-through device for DNA amplification—towards in situ gene analysis. Chem. Eng. J. 101, 151–156 (2004)

    Article  Google Scholar 

  13. Benhamed, S., Guardiola, F.A., Mars, M., Esteban, M.Á.: Pathogen bacteria adhesion to skin mucus of fishes. Vet. Microbiol. 171, 1–12 (2014). doi:10.1016/j.vetmic.2014.03.008

    Article  Google Scholar 

  14. Cortés, M.E., Bonilla, J.C., Sinisterra, R.D.: Biofilm formation, control and novel strategies for eradication. Sci. Against Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2, 896–905 (2011)

    Google Scholar 

  15. Toy, L.W., Macera, L.: Evidence-based review of silver dressing use on chronic wounds. J. Am. Acad. Nurse Pract. 23, 183–192 (2011)

    Article  Google Scholar 

  16. Yue, I.C., Poff, J., Cortés, M.E., Sinisterra, R.D., Faris, C.B., Hildgen, P., Langer, R., Shastri, V.P.: A novel polymeric chlorhexidine delivery device for the treatment of periodontal disease. Biomaterials 25, 3743–3750 (2004)

    Article  Google Scholar 

  17. Kirillov, A.: AForge.NET (2006)

    Google Scholar 

  18. van der Valk, F.M., Verweij, S.L., Zwinderman, K.A.H., Strang, A.C., Kaiser, Y., Marquering, H.A., Nederveen, A.J., Stroes, E.S.G., Verberne, H.J., Rudd, J.H.F.: Thresholds for arterial wall inflammation quantified by 18F-FDG PET imaging: implications for vascular interventional studies. JACC Cardiovasc. Imaging 9, 1198–1207 (2016). doi:10.1016/j.jcmg.2016.04.007

    Article  Google Scholar 

  19. Osma, J.F., Toca-Herrera, J.L., Rodríguez-Couto, S.: Environmental, scanning electron and optical microscope image analysis software for determining volume and occupied area of solid-state fermentation fungal cultures. Biotechnol. J. 6, 45–55 (2011). doi:10.1002/biot.201000256

    Article  Google Scholar 

  20. Noor, R., Islam, Z., Munshi, S.K., Rahman, F.: Influence of temperature on Escherichia coli growth in different culture media. J. Pure Appl. Microbiol. 7, 899–904 (2013)

    Google Scholar 

  21. Lopez-Barbosa, N., Segura, C., Osma, J.F.: Electro-immuno sensors: current developments and future trends. Int. J. Biosens. Bioelectron. 2, 1–6 (2017). doi:10.15406/ijbsbe.2017.02.00010

    Google Scholar 

  22. Lopez-Barbosa, N., Gamarra, J.D., Osma, J.F.: The future point-of-care detection of disease and its data capture and handling. Anal. Bioanal. Chem. (2016). doi:10.1007/s00216-015-9249-2

  23. Lopez-Barbosa, N., Osma, J.F.: Biosensors: migrating from clinical to environmental industries. Biosens. J. (2016). doi:10.4172/2090-4967.100e106

  24. Costerton, J.W., Stewart, P.S., Greenberg, E.P.: Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999)

    Article  Google Scholar 

  25. Satpathy, S., Sen, S.K., Pattanaik, S., Raut, S.: Review on bacterial biofilm: an universal cause of contamination. Biocatal. Agr. Biotechnol. 7, 56–66 (2016). doi:10.1016/j.bcab.2016.05.002

    Google Scholar 

  26. Hernández, C.A., Gaviria, L.N., Segura, S.M., Osma, J.F.: Concept design for a novel confined-bacterial-based biosensor for water quality control. In: 2013 Pan American Health Care Exchanges, pp. 1–3 (2013). doi:10.1109/PAHCE.2013.6568257

Download references

Acknowledgements

The authors thank the cleanroom facilities from the Department of Electrical and Electronics Engineering at Universidad de los Andes for the financial support. Claudia Camila Barrera Garzón for her help during the bacteria culturing with traditional techniques and important insights during the design stage. The group of Biophysics, specially to David Camilo Durán Chaparro, from the Physics Department of the Universidad de los Andes, for providing us with the E. coli strain, their support and facilities.

Finally, Cesar A. Hernandez thanks Colciencias for their support through doctoral scholarship PDBCNal 567.

Conflict of Interests

In this work, there are no potential conflicts between or related to any author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar A. Hernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hernandez, C.A., Lopez-Barbosa, N., Segura, C.C., Osma, J.F. (2017). High Definition Method for Imaging Bacteria in Microconfined Environments on Solid Media. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10209. Springer, Cham. https://doi.org/10.1007/978-3-319-56154-7_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56154-7_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56153-0

  • Online ISBN: 978-3-319-56154-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics