Skip to main content

Guided Wave Interaction in Photonic Integrated Circuits — A Hybrid Analytical/Numerical Approach to Coupled Mode Theory

  • Chapter
  • First Online:
Recent Trends in Computational Photonics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 204))

Abstract

Frequently, optical integrated circuits combine elements (waveguide channels, cavities), the simulation of which is well established through mature numerical eigenproblem solvers. It remains to predict the interaction of these modes. We address this task by a general, “Hybrid” variant (HCMT) of Coupled Mode Theory. Using methods from finite-element numerics, the properties of a circuit are approximated by superpositions of eigen-solutions for its constituents, leading to quantitative, computationally cheap, and easily interpretable models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term ab initio is here used to indicate simulations that predict the optical electromagnetic field for given structural data (geometry, material properties, and excitation, if applicable), without any further fit parameters.

  2. 2.

    There are as many supermodes as there are unknowns in (3.24), in principle. The relevant ones need to be filtered out, typically by specifying a range of resonance frequencies, or a maximum level of attenuation.

  3. 3.

    One regards the entire structure as one composite waveguide with three interior layers that supports, per polarization, two “supermodes” of different parity with slightly different propagation constants \(\beta _0\) and \(\beta _1\). These determine the coupling length as \(L_{\text{ c }} = \pi /|\beta _0-\beta _1|\). The supermodes are computed by a solver (cf. e.g. [42]) for the modes of dielectric multilayer slabs.

  4. 4.

    Certainly we do not intend to recommend the HCMT approach as the “method of choice” for this particular waveguide crossing.

  5. 5.

    In special cases radiated fields can also be incorporated [27].

  6. 6.

    Although the forward and backward propagating modes of the same channel share, up to the signs of certain field components identical profile shapes, the combination of electric and magnetic parts of the mode profile, as applied here, ensures orthogonality of the directional modes with respect to a suitable inner product [1, 43] (“power orthogonality”).

  7. 7.

    The overall phase of the solution has been adjusted to exhibit the maximum amplitude of the standing waves in the field plots Fig. 3.8a, b, therefore \(f(z_{\text{ l }})\) differs from 1.

  8. 8.

    The computational setting, with, e.g. the rectangular computational window, and quadrature rules applied subsequently along the x- and z-coordinates, does not respect the triangular symmetry, i.e. must be expected to numerically lift the degeneracy.

References

  1. C. Vassallo, Optical Waveguide Concepts (Elsevier, Amsterdam, 1991)

    Google Scholar 

  2. S.L. Chuang, J. Lightwave Technol. 5(1), 5 (1987)

    Google Scholar 

  3. W.P. Huang, J. Opt. Soc. Am. A 11(3), 963 (1994)

    Google Scholar 

  4. D.G. Hall, B.J. Thompson (eds.), Selected Papers on Coupled-Mode Theory in Guided-Wave Optics, SPIE Milestone Series (SPIE Optical Engineering Press, Bellingham, 1993)

    Google Scholar 

  5. A.W. Snyder, J.D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983)

    Google Scholar 

  6. R. März, Integrated Optics – Design and Modeling (Artech House, Boston, 1994)

    Google Scholar 

  7. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, San Diego, 2000)

    Google Scholar 

  8. D.R. Rowland, J.D. Love, I.E.E. Proc. Pt. J. 140(3), 177 (1993)

    Google Scholar 

  9. K.R. Hiremath, M. Hammer, in Photonic Microresonator Research and Applications, vol. 156, Springer Series in Optical Sciences, ed. by I. Chremmos, N. Uzunoglu, O. Schwelb (Springer, London, 2010), pp. 29–59

    Google Scholar 

  10. B.E. Little, S.T. Chu, H.A. Haus, J. Foresi, J.P. Laine, J. Lightwave Technol. 15(6), 998 (1997)

    Google Scholar 

  11. C. Manolatou, M.J. Khan, S. Fan, P.R. Villeneuve, H.A. Haus, J.D. Joannopoulos, IEEE J. Quantum Electron. 35(9), 1322 (1999)

    Google Scholar 

  12. M.J. Khan, C. Manolatou, S. Fan, P.R. Villeneuve, H.A. Haus, J.D. Joannopoulos, IEEE J. Quantum Electron. 35(10), 1451 (1999)

    Google Scholar 

  13. S. Fan, P.R. Villeneuve, J.D. Joannopoulos, M.J. Khan, C. Manolatou, H.A. Haus, Phys. Rev. B 59(24), 15882 (1999)

    Google Scholar 

  14. Q. Li, T. Wang, Y. Su, M. Yan, M. Qiu, Opt. Express 18(8), 8367 (2010)

    Google Scholar 

  15. M. Lohmeyer, N. Bahlmann, O. Zhuromskyy, P. Hertel, Opt. Quantum Electron. 31, 877 (1999)

    Google Scholar 

  16. M. Lohmeyer, N. Bahlmann, O. Zhuromskyy, H. Dötsch, P. Hertel, Opt. Commun. 158, 189 (1998)

    Google Scholar 

  17. M. Lohmeyer, N. Bahlmann, O. Zhuromskyy, H. Dötsch, P. Hertel, J. Lightwave Technol. 17(12), 2605 (1999)

    Google Scholar 

  18. P.E. Barclay, K. Srinivasan, O. Painter, J. Opt. Soc. Am. B 20(11), 2274 (2003)

    Google Scholar 

  19. P.E. Barclay, K. Srinivasan, M. Borselli, O. Painter, Opt. Lett. 29(7), 697 (2004)

    Google Scholar 

  20. R. Stoffer, K.R. Hiremath, M. Hammer, L. Prkna, J. Čtyroký, Opt. Commun. 256(1–3), 46 (2005)

    Google Scholar 

  21. C. Vassallo, Opt. Quantum Electron. 29, 95 (1997)

    Google Scholar 

  22. P. Bienstmann, S. Selleri, L. Rosa, H.P. Uranus, W.C.L. Hopman, R. Costa, A. Melloni, L.C. Andreani, J.P. Hugonin, P. Lalanne, D. Pinto, S.S.A. Obayya, M. Dems, K. Panajotov, Opt. Quantum Electron. 38(9–11), 731 (2006)

    Google Scholar 

  23. PhoeniX Software, Enschede, The Netherlands, http://www.phoenixbv.com

  24. JCMwave GmbH, Berlin, Germany, http://www.jcmwave.com

  25. Lumerical Solutions, Inc., Vancouver, Canada, http://www.lumerical.com

  26. Photon Design, Oxford, United Kingdom, http://www.photond.com

  27. M. Hammer, J. Lightwave Technol. 25(9), 2287 (2007)

    Google Scholar 

  28. M. Hammer, Opt. Quantum Electron. 40(11–12), 821 (2009)

    Google Scholar 

  29. M. Hammer, J. Opt. Soc. Am. B 27(11), 2237 (2010)

    Google Scholar 

  30. E. Franchimon, K. Hiremath, R. Stoffer, M. Hammer, J. Opt. Soc. Am. B 30(4), 1048 (2013)

    Google Scholar 

  31. K.R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, J. Čtyroký, Opt. Quantum Electron. 37(1–3), 37 (2005)

    Google Scholar 

  32. L. Prkna, J. Čtyroký, M. Hubálek, Opt. Quantum Electron. 36(1/3), 259 (2004)

    Google Scholar 

  33. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)

    Google Scholar 

  34. M.A. Popović, C. Manolatou, M.R. Watts, Opt. Express 14(3), 1208 (2006)

    Google Scholar 

  35. M. Maksimovic, M. Hammer, E. van Groesen, Opt. Commun. 281(6), 1401 (2008)

    Google Scholar 

  36. M. Maksimovic, M. Hammer, E. van Groesen, Opt. Eng. 47(11), 114601 1 (2008)

    Google Scholar 

  37. M. Maksimovic, Optical resonances in multilayer structures (University of Twente, Enschede, The Netherlands, 2008). Ph.D. thesis

    Google Scholar 

  38. M. Hammer, METRIC — mode expansion tools for 2D rectangular integrated optical circuits, http://metric.computational-photonics.eu/

  39. K.R. Hiremath, CIRCURS — circular resonator simulator, http://home.iitj.ac.in/~k.r.hiremath/circurs/

  40. M. Hammer, Opt. Commun. 235(4–6), 285 (2004)

    Google Scholar 

  41. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, 2nd edn. (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  42. M. Hammer, OMS — 1-D mode solver for dielectric multilayer slab waveguides, http://www.computational-photonics.eu/oms.html

  43. M. Lohmeyer, R. Stoffer, Opt. Quantum Electron. 33(4/5), 413 (2001)

    Google Scholar 

  44. F. Michelotti, A. Driessen, M. Bertolotti (eds.), Microresonators as building blocks for VLSI photonics, in AIP Conference Proceedings, vol. 709 (American Institute of Physics, Melville, 2004)

    Google Scholar 

  45. I. Chremmos, N. Uzunoglu, O. Schwelb (eds.), in Photonic microresonator research and applications. Springer Series in Optical Sciences, Vol. 156 (Springer, London, 2010)

    Google Scholar 

  46. K.R. Hiremath, R. Stoffer, M. Hammer, Opt. Commun. 257(2), 277 (2006)

    Google Scholar 

  47. J.K.S. Poon, J. Scheuer, A. Yariv, IEEE Photonics Technol. Lett. 16(5), 1331 (2004)

    Google Scholar 

  48. O. Schwelb, I. Chremmos, in Photonic Microresonator Research and Applications, ed. by I. Chremmos, N. Uzunoglu, O. Schwelb, Springer Series, in Optical Sciences, Vol. 156, (Springer, London, 2010), pp. 139–163

    Google Scholar 

  49. S.V. Boriskina, Opt. Lett. 31(3), 338 (2006)

    Google Scholar 

  50. S.I. Schmid, K. Xia, J. Evers, Phys. Rev. A 84, 013808 (2011)

    Google Scholar 

  51. C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 85, 033827 (2012)

    Google Scholar 

  52. C. Schmidt, A. Chipouline, T. Käsebier, E.B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 80, 043841 (2009)

    Google Scholar 

  53. B. Gallinet, O.J.F. Martin, Phys. Rev. B 83(23), 235427 (2011)

    Google Scholar 

  54. M.S. Stern, I.E.E. Proc. Pt. J. 135(1), 56 (1988)

    Google Scholar 

  55. M.S. Stern, I.E.E. Proc. Pt. J. 135(5), 333 (1988)

    Google Scholar 

  56. B. Kettner, Detection of spurious modes in resonance mode computations — pole condition method (Freie Universität zu Berlin, Berlin, 2012). Dissertation

    Google Scholar 

  57. L. Zschiedrich, Transparent boundary conditions for Maxwells equations: numerical concepts beyond the PML method (Freie Universität zu Berlin, Berlin, 2009). Dissertation

    Google Scholar 

  58. E.W.C. van Groesen, J. Molenaar, Continuum Modeling in the Physical Sciences (SIAM Publishers, Philadelphia, 2007)

    Google Scholar 

Download references

Acknowledgements

Financial support from the German Research Foundation (Deutsche Forschungsgemeinschaft DFG, projects HA 7314/1-1 and TRR 142) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hammer, M. (2017). Guided Wave Interaction in Photonic Integrated Circuits — A Hybrid Analytical/Numerical Approach to Coupled Mode Theory. In: Agrawal, A., Benson, T., De La Rue, R., Wurtz, G. (eds) Recent Trends in Computational Photonics. Springer Series in Optical Sciences, vol 204. Springer, Cham. https://doi.org/10.1007/978-3-319-55438-9_3

Download citation

Publish with us

Policies and ethics