Skip to main content

The Detectability of Earth’s Biosignatures Across Time

  • Reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Over the past two decades, enormous advances in the detection of exoplanets have taken place. Currently, we have discovered hundreds of Earth-sized planets, several of them within the habitable zone of their star. In the coming years, the efforts will concentrate in the characterization of these planets and their atmospheres to try to detect the presence of biosignatures. However, even if we discovered a second Earth, it is very unlikely that it would present a stage of evolution similar to the present-day Earth. Our planet has been far from static since its formation about 4.5 Ga ago; on the contrary, during this time, it has undergone multiple changes in its atmospheric composition, its temperature structure, its continental distribution, and even changes in the forms of life that inhabit it. All these changes have affected the global properties of Earth as seen from an astronomical distance. Thus, it is of interest not only to characterize the observables of the Earth as it is today but also at different epochs. Here we review the detectability of the Earth’s globally averaged properties over time. This includes atmospheric composition and biosignatures and surface properties that can be interpreted as signs of habitability (bioclues). The resulting picture is that truly unambiguous biosignatures are only detectable for about 1/4 of the Earth’s history. For the rest of the time, we rely on detectable bioclues that can only establish an statistical likelihood for the presence of life on a given planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe Y, Matsui T (1988) Evolution of an impact-generated H2O–CO2 atmosphere and formation of a hot proto-ocean on Earth. J Atmos Sci 45:3081–3101

    Article  ADS  Google Scholar 

  • Abramov O, Mojzsis SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459:419–422

    Article  ADS  Google Scholar 

  • Ackerman AS, Marley MS (2001) Precipitating condensation clouds in substellar atmospheres. ApJ 556:872–884

    Article  ADS  Google Scholar 

  • Albani AE, Bengtson S, Canfield DE et al (2010) Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466:100–104

    Article  ADS  Google Scholar 

  • Anglada-Escudé G, Tuomi M, Gerlach E et al (2013) A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone. A&A 556:A126

    Article  ADS  Google Scholar 

  • Anglada-Escudé G, Amado PJ, Barnes J et al (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437–440

    Article  ADS  Google Scholar 

  • Arney G, Domagal-Goldman SD, Meadows VS et al (2016) The pale orange dot: the spectrum and habitability of hazy archean Earth. Astrobiology 16:873–899

    Article  ADS  Google Scholar 

  • Arnold L, Gillet S, Lardière O, Riaud P, Schneider J (2002) A test for the search for life on extrasolar planets. Looking for the terrestrial vegetation signature in the Earthshine spectrum. A&A 392:231–237

    Google Scholar 

  • Bahcall JN, Pinsonneault MH Basu S (2001) Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. ApJ 555:990–1012

    Article  ADS  Google Scholar 

  • Barclay T, Burke CJ, Howell SB et al (2013) A super-earth-sized planet orbiting in or near the habitable zone around a sun-like star. ApJ 768:101

    Article  ADS  Google Scholar 

  • Borucki WJ, Koch DG, Batalha N et al (2012) Kepler-22b: a 2.4 Earth-radius planet in the habitable zone of a Sun-like Star. ApJ 745:120

    Google Scholar 

  • Borucki WJ, Agol E, Fressin F et al (2013) Kepler-62: a five-planet system with planets of 1.4 and 1.6 earth radii in the habitable zone. Science 340:587–590

    Article  ADS  Google Scholar 

  • Bowring SA, Williams IS (1999) Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib Mineral Petrol 134:3–16

    Article  ADS  Google Scholar 

  • Buick R (2010) Early life: ancient acritarchs. Nature 463:885–886

    Article  ADS  Google Scholar 

  • Cassan A, Kubas D, Beaulieu JP et al (2012) One or more bound planets per Milky Way star from microlensing observations. Nature 481:167–169

    Article  ADS  Google Scholar 

  • Charbonneau D, Berta ZK, Irwin J et al (2009) A super-Earth transiting a nearby low-mass star. Nature 462:891–894

    Article  ADS  Google Scholar 

  • Charnay B, Forget F, Wordsworth R et al (2013) Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3-D GCM. J Geophys Res (Atmos) 118:10

    Google Scholar 

  • Cowan NB, Robinson T, Livengood TA et al (2011) Rotational variability of earth’s polar regions: implications for detecting snowball planets. ApJ 731:76

    Article  ADS  Google Scholar 

  • Crow CA, McFadden LA, Robinson T et al (2011) Views from EPOXI: colors in our solar system as an analog for extrasolar planets. ApJ 729:130

    Article  ADS  Google Scholar 

  • Des Marais DJ, Harwit MO, Jucks KW et al (2002) Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2:153–181

    Article  ADS  Google Scholar 

  • Domagal-Goldman SD, Meadows VS, Claire MW, Kasting JF (2011) Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology 11:419–441

    Article  ADS  Google Scholar 

  • Ford EB, Seager S, Turner EL (2001) Characterization of extrasolar terrestrial planets from diurnal photometric variability. Nature 412:885–887

    Article  ADS  Google Scholar 

  • Fressin F, Torres G, Rowe JF et al (2012) Two Earth-sized planets orbiting Kepler-20. Nature 482:195–198

    Article  ADS  Google Scholar 

  • Fressin F, Torres G, Charbonneau D et al (2013) The false positive rate of Kepler and the occurrence of planets. ApJ 766:81

    Article  ADS  Google Scholar 

  • Fujii Y, Kawahara H (2012) Mapping Earth analogs from photometric variability: spin-orbit tomography for planets in inclined orbits. ApJ 755:101

    Article  ADS  Google Scholar 

  • Fujii Y, Turner EL, Suto Y (2013) Variability of water and oxygen absorption bands in the disk-integrated spectra of Earth. ApJ 765:76

    Article  ADS  Google Scholar 

  • Furukawa Y, Sekine T, Oba M, Kakegawa T, Nakazawa H (2009) Biomolecule formation by oceanic impacts on early Earth. Nat Geosci 2:62–66

    Article  ADS  Google Scholar 

  • Gebauer S, Grenfell JL, Stock JW et al (2017) Evolution of Earth-like extrasolar planetary atmospheres: assessing the atmospheres and biospheres of early Earth analog planets with a coupled atmosphere biogeochemical model. Astrobiology 17:27–54

    Article  ADS  Google Scholar 

  • Gilliland RL, Marcy GW, Rowe JF et al (2013) Kepler-68: three planets, one with a density between that of Earth and ice giants. ApJ 766:40

    Article  ADS  Google Scholar 

  • Gillon M, Triaud AHMJ, Demory BO et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542:456–460

    Article  ADS  Google Scholar 

  • Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435:466–469

    Article  ADS  Google Scholar 

  • Gough DO (1981) Solar interior structure and luminosity variations. Sol Phys 74:21–34

    Article  ADS  Google Scholar 

  • Govindasamy B, Caldeira K (2000) Geoengineering Earth’s radiation balance to mitigate CO2-induced climate change. Geophys Res Lett 27:2141–2144

    Article  ADS  Google Scholar 

  • Hamdani S, Arnold L, Foellmi C et al (2006) Biomarkers in disk-averaged near-UV to near-IR Earth spectra using Earthshine observations. A&A 460:617–624

    Article  ADS  Google Scholar 

  • Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ, Kasting JF (2008) A revised, hazy methane greenhouse for the archean Earth. Astrobiology 8:1127–1137

    Article  ADS  Google Scholar 

  • Hegde S, Kaltenegger L (2013) Colors of extreme exo-Earth environments. Astrobiology 13: 47–56

    Article  ADS  Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic snowball Earth. Science 281:1342

    Article  ADS  Google Scholar 

  • Kaltenegger L, Traub WA, Jucks KW (2007) Spectral evolution of an Earth-like planet. ApJ 658:598–616

    Article  ADS  Google Scholar 

  • Kamber BS (2015) The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Res 258:48–82

    Article  ADS  Google Scholar 

  • Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926

    Article  ADS  Google Scholar 

  • Kasting JF, Brown LL (1998) Methanogenesis and the climates of early Earth and Mars. In: Celnikier LM, Trân Thanh Vân J (eds) Planetary systems: the long view, p 443. http://adsabs.harvard.edu/abs/1998pslv.conf..443K

  • Kawahara H, Fujii Y (2010) Global mapping of Earth-like exoplanets from scattered light curves. ApJ 720:1333–1350

    Article  ADS  Google Scholar 

  • Kawahara H, Fujii Y (2011) Mapping clouds and terrain of earth-like planets from photometric variability: demonstration with planets in face-on orbits. ApJ 739:L62

    Article  ADS  Google Scholar 

  • Kiang NY, Segura A, Tinetti G et al (2007a) Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology 7:252–274

    Google Scholar 

  • Kiang NY, Siefert J, Govindjee, Blankenship RE (2007b) Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology 7:222–251

    Google Scholar 

  • Kiehl JT, Dickinson RE (1987) A study of the radiative effects of enhanced atmospheric CO_2 and CH_4 on early Earth surface temperatures. J Geophys Res 92:2991–2998

    Article  ADS  Google Scholar 

  • Krissansen-Totton J, Bergsman DS, Catling DC (2016) On detecting biospheres from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology 16:39–67

    Article  ADS  Google Scholar 

  • Lingam M, Loeb A (2017) Natural and artificial spectral edges in exoplanets. ArXiv e-prints

    Google Scholar 

  • Lovelock JE (1975) Thermodynamics and the recognition of alien biospheres. Proc R Soc Lond Ser B 189:167–180

    Article  ADS  Google Scholar 

  • Miles-Páez PA, Pallé E, Zapatero Osorio MR (2014) Simultaneous optical and near-infrared linear spectropolarimetry of the earthshine. A&A 562:L5

    Article  ADS  Google Scholar 

  • Mojzsis SJ, Arrhenius G, McKeegan KD et al (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59

    Article  ADS  Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4300 Myr ago. Nature 409:178–181

    Article  ADS  Google Scholar 

  • Montañés-Rodríguez P, Pallé E, Goode PR, Martín-Torres FJ (2006) Vegetation signature in the observed globally integrated spectrum of earth considering simultaneous cloud data: applications for extrasolar planets. ApJ 651:544–552

    Article  ADS  Google Scholar 

  • Muirhead PS, Johnson JA, Apps K et al (2012) Characterizing the cool KOIs. III. KOI 961: a small star with large proper motion and three small planets. ApJ 747:144

    Article  ADS  Google Scholar 

  • Olson J (2006) Photosynthesis in the archean era. Photosynth Res 88(2):109–117

    Article  Google Scholar 

  • O’Malley-James JT, Greaves JS, Raven JA, Cockell CS (2013) Swansong biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes. Int J Astrobiol 12:99–112

    Article  Google Scholar 

  • O’Malley-James JT, Cockell CS, Greaves JS, Raven JA (2014) Swansong biospheres II: the final signs of life on terrestrial planets near the end of their habitable lifetimes. Int J Astrobiol 13:229–243

    Article  Google Scholar 

  • Pallé E, Goode PR, Yurchyshyn V et al (2003) Earthshine and the Earth’s albedo: 2. Observations and simulations over 3 years. J Geophys Res (Atmos) 108:4710

    Google Scholar 

  • Pallé E, Goode PR, Montanes-Rodriguez P, Koonin SE (2004) Changes in Earth’s reflectance over the past two decades. Science 304:1299–1301

    Article  ADS  Google Scholar 

  • Pallé E, Ford EB, Seager S, Montañés-Rodríguez P, Vazquez M (2008) Identifying the rotation rate and the presence of dynamic weather on extrasolar Earth-like planets from photometric observations. ApJ 676:1319–1329

    Article  ADS  Google Scholar 

  • Pallé E, Zapatero Osorio MR, Barrena R, Montañés-Rodríguez P, Martín EL (2009) Earth’s transmission spectrum from lunar eclipse observations. Nature 459:814–816

    Article  ADS  Google Scholar 

  • Parenteau MN, Kiang NY, Blankenship RE, Sanromá E, Palle Bago, E, Hoehler TM, Pierson BK, Meadows VS (2015) Global surface photosynthetic biosignatures prior to the rise of Oxygen. In: AGU fall meeting abstracts, p P32B–05. http://adsabs.harvard.edu/abs/2015AGUFM.P32B..05P

  • Pepe F, Lovis C, Ségransan D et al (2011) The HARPS search for Earth-like planets in the habitable zone. I. Very low-mass planets around < ASTROBJ> HD 20794< /ASTROBJ> , < ASTROBJ> HD 85512< /ASTROBJ> , and < ASTROBJ> HD 192310< /ASTROBJ> . A&A 534:A58

    Article  ADS  Google Scholar 

  • Pinto JP, Gladstone GR, Yung YL (1980) Photochemical production of formaldehyde in earth’s primitive atmosphere. Science 210:183–185

    Article  ADS  Google Scholar 

  • Qiu J, Goode PR, Pallé E et al (2003) Earthshine and the Earth’s albedo: 1. Earthshine observations and measurements of the lunar phase function for accurate measurements of the Earth’s bond albedo. J Geophys Res (Atmos) 108:4709

    Google Scholar 

  • Reinhard CT, Olson SL, Schwieterman EW, Lyons TW (2017) False negatives for remote life detection on ocean-bearing planets: lessons from the early Earth. Astrobiology 17:287–297

    Article  ADS  Google Scholar 

  • Robinson TD, Meadows VS, Crisp D et al (2011) Earth as an extrasolar planet: Earth model validation using EPOXI Earth observations. Astrobiology 11:393–408

    Article  ADS  Google Scholar 

  • Rosing MT, Bird DK, Sleep NH, Bjerrum CJ (2010) No climate paradox under the faint early Sun. Nature 464:744–747

    Article  ADS  Google Scholar 

  • Rossow WB, Walker AW, Beuschel DE, Roiter MD (1996) International satellite cloud climatology project (ISCCP): documentation of new cloud datasets. World climate research programme report WMO/TD 737, World meteorological organization, Geneva

    Google Scholar 

  • Rushby AJ, Claire MW, Osborn H, Watson AJ (2013) Habitable zone lifetimes of exoplanets around main sequence stars. Astrobiology 13:833–849

    Article  ADS  Google Scholar 

  • Sanromá E Pallé E (2012) Reconstructing the photometric light curves of Earth as a planet along its history. ApJ 744:188

    Article  ADS  Google Scholar 

  • Sanromá E, Pallé E, García Munõz A (2013) On the effects of the evolution of microbial mats and land plants on the Earth as a planet. photometric and spectroscopic light curves of Paleo-Earths. ApJ 766:133

    Article  ADS  Google Scholar 

  • Scheer H (2003) The pigments. In: Green BR, Parson WW (eds) Advances in photosynthesis and respiration. Light-harvesting antennas in photosynthesis, vol 13. Kluwer Academic, Dordrecht, pp 29–81

    Google Scholar 

  • Schneider J, Léger A, Fridlund M et al (2010) The far future of exoplanet direct characterization. Astrobiology 10:121–126

    Article  ADS  Google Scholar 

  • Schulze-Makuch D, Guinan E (2016) Another Earth 2.0? not so fast. Astrobiology 16:817–821

    Article  ADS  Google Scholar 

  • Seager S, Turner EL, Schafer J, Ford EB (2005) Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5:372–390

    Article  ADS  Google Scholar 

  • Seckbach J, Oren A (2010) Microbial mats: modern and ancient microorganisms in stratified systems. Cellular origin, life in extreme habitats and astrobiology. Springer, London

    Google Scholar 

  • Sterzik MF, Bagnulo S, Pallé E (2012) Biosignatures as revealed by spectropolarimetry of Earthshine. Nature 483:64–66

    Article  ADS  Google Scholar 

  • Stüeken EE (2016) Nitrogen in ancient mud: a biosignature? Astrobiology 16:730–735

    Article  ADS  Google Scholar 

  • Stüeken EE, Kipp MA, Koehler MC et al (2016) Modeling pN2 through geological time: implications for planetary climates and atmospheric biosignatures. Astrobiology 16:949–963

    Article  ADS  Google Scholar 

  • Tarduno JA, Cottrell RD, Watkeys MK et al (2010) Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science 327:1238

    Article  ADS  Google Scholar 

  • Tarduno JA, Cottrell RD, Davis WJ, Nimmo F, Bono RK (2015) A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science 349:521–524

    Article  ADS  Google Scholar 

  • Tian F, Toon OB, Pavlov AA, De Sterck H (2005) A Hydrogen-rich early Earth atmosphere. Science 308:1014–1017

    Article  ADS  Google Scholar 

  • Tinetti G, Meadows VS, Crisp D et al (2006a) Detectability of planetary characteristics in disk-averaged spectra. I: the Earth model. Astrobiology 6:34–47

    ADS  Google Scholar 

  • Tinetti G, Meadows VS, Crisp D et al (2006b) Detectability of planetary characteristics in disk-averaged spectra II: synthetic spectra and light-curves of Earth. Astrobiology 6:881–900

    Article  ADS  Google Scholar 

  • Tinetti G, Rashby S, Yung YL (2006c) Detectability of red-edge-shifted vegetation on terrestrial planets orbiting M Stars. ApJ 644:L129–L132

    Article  ADS  Google Scholar 

  • Turnbull MC, Traub WA, Jucks KW et al (2006) Spectrum of a habitable world: earthshine in the near-infrared. ApJ 644:551–559

    Article  ADS  Google Scholar 

  • Udry S, Bonfils X, Delfosse X et al (2007) The HARPS search for southern extra-solar planets. XI. super-earths (5 and 8 M{øplus}) in a 3-planet system. A&A 469:L43–L47

    Article  ADS  Google Scholar 

  • Vázquez M, Pallé E Montañés Rodríguez P (2010a) The earth as a distant planet. https://doi.org/10.1007/978-1-4419-1684-6

    Book  Google Scholar 

  • Vázquez M, Pallé E, Rodríguez PM (2010b) The Earth as a distant planet. https://doi.org/10.1007/978-1-4419-1684-6

    Book  Google Scholar 

  • Walker JCG (1977) Evolution of the atmosphere. Macmillan/Collier Macmillan, New York/London. http://adsabs.harvard.edu/abs/1977evat.book.....W

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  ADS  Google Scholar 

  • Woolf NJ, Smith PS, Traub WA, Jucks KW (2002) The spectrum of earthshine: a pale blue dot observed from the ground. ApJ 574:430–433

    Article  ADS  Google Scholar 

  • Wright JT, Sigurdsson S (2016) Families of plausible solutions to the puzzle of Boyajian Star. ApJ 829:L3

    Article  ADS  Google Scholar 

  • Xiong J, Fischer W, Inoue K, Nakahara M, Bauer C (2000) Molecular evidence for the early evolution of photosynthesis. Science 289(5485):1724–1730

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partly financed by the Spanish Ministry of Economics and Competitiveness through projects ESP2014-57495-C2-1-R and ESP2016-80435-C2-2-R of the Spanish Secretary of State for R&D&i (MINECO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enric Pallé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pallé, E. (2018). The Detectability of Earth’s Biosignatures Across Time. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_70

Download citation

Publish with us

Policies and ethics