Skip to main content

Instabilities and Flow Structures in Protoplanetary Disks: Setting the Stage for Planetesimal Formation

  • Reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

This chapter highlights the properties of turbulence and mesoscale flow structures in protoplanetary disks and their role in the planet formation process. Here we focus on the formation of planetesimals from a gravitational collapse of a pebble cloud. Large-scale and long-lived flow structures – vortices and zonal flows – are a consequence of weak magneto- and hydrodynamic instabilities in the pressure and entropy stratified quasi-Keplerian shear flow interacting with the fast rotation of the disk. The vortices and zonal flows on the other hand are particle traps tapping into the radial pebble flux of the disk, leading to locally sufficient accumulations to trigger gravitational collapse, directly converting pebbles to many kilometer sized planetesimals. This collapse is moderated by the streaming instability, which is a back-reaction from the particle accumulations onto the gas flow. Without trapping pebbles and increasing thus the local solid-to-gas ratio, this back-reaction would ultimately prevent the formation of planetesimals via turbulent diffusion. The formation of long-lived flow structures is therefore a necessary condition for an efficient and fast formation of planetesimals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander R, Pascucci I, Andrews S, Armitage P, Cieza L (2014) The dispersal of protoplanetary disks. In: Beuther H, Klessen RS, Dullemond CP, Henning T (eds) Protostars planets VI. University of Arizona Press, Tucson, pp 475–496

    Google Scholar 

  • Arlt R, Urpin V (2004) Simulations of vertical shear instability in accretion discs. Astron Astrophy 426(3):755–765. https://doi.org/10.1051/0004-6361:20035896

    Article  ADS  Google Scholar 

  • Armitage P (2013) Astrophysics of planet formation. Cambridge University Press. https://books.google.de/books?id=EFYOngEACAAJ

  • Avila M (2012) Stability and angular-momentum transport of fluid flows between corotating cylinders. Phys Rev Lett 108(12):124501

    Article  ADS  Google Scholar 

  • Bai XN, Stone JM (2013) Wind-driven accretion in protoplanetary disks. I. Suppression of the magnetorotational instability and launching of the magnetocentrifugal wind. ApJ 769(1):76

    Article  ADS  Google Scholar 

  • Balbus SA, Hawley JF (1991) A powerful local shear instability in weakly magnetized disks. I – linear analysis. II – nonlinear evolution. Astrophys J 376:214–233

    Article  ADS  Google Scholar 

  • Barge P, Sommeria J (1995a) Did planet formation begin inside persistent gaseous vortices? Astron Astrophys 295(1):L1–L4

    ADS  Google Scholar 

  • Béthune W, Lesur G, Ferreira J (2016) Self-organisation in protoplanetary discs. Global, non-stratified Hall-MHD simulations. A&A 589:A87

    Article  ADS  Google Scholar 

  • Béthune W, Lesur G, Ferreira J (2017) Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case. A&A 600:A75

    Google Scholar 

  • Beutel M (2012) An analytical model for the amplification of vortices with baroclinic stratification around young stars. Bachelor Thesis, Max Planck Institute for Astronomy, Heidelberg University

    Google Scholar 

  • Birnstiel T, Klahr H, Ercolano B (2012) A simple model for the evolution of the dust population in protoplanetary disks. A&A 539:A148

    Article  ADS  Google Scholar 

  • Carrasco-González C, Henning T, Chandler CJ et al (2016) The VLA view of the HL Tau disk: disk mass, grain evolution, and early planet formation. ApJ 821:L16

    Article  ADS  Google Scholar 

  • Carrera D, Johansen A, Davies MB (2015) How to form planetesimals from mm-sized chondrules and chondrule aggregates. A&A 579:A43

    Article  ADS  Google Scholar 

  • Carrera D, Gorti U, Johansen A, Davies MB (2017) Planetesimal formation by the streaming instability in a photoevaporating disk. ApJ 839:16

    ADS  Google Scholar 

  • Clarke C, Carswell B (2014) Principles of astrophysical fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Davis SW, Stone JM, Pessah ME (2010) Sustained magnetorotational turbulence in local simulations of stratified disks with zero net magnetic flux. ApJ 713:52–65

    Article  ADS  Google Scholar 

  • Dittkrist KM, Mordasini C, Klahr H, Alibert Y, Henning T (2014) Impacts of planet migration models on planetary populations. Effects of saturation, cooling and stellar irradiation. A&A 567:A121

    Article  Google Scholar 

  • Dittrich K, Klahr H, Johansen A (2013) Gravoturbulent planetesimal formation: the positive effect of long-lived zonal flows. ApJ 763:117

    Article  ADS  Google Scholar 

  • Drazin PG, Reid WH (2004) Hydrodynamic stability, 2nd edn. Cambridge University Press. http://www.ebook.de/de/product/4474346/p_g_drazin_w_h_reid_hydrodynamic_stability.html

  • Dzyurkevich N, Turner NJ, Henning T, Kley W (2013) Magnetized accretion and dead zones in protostellar disks. Astrophys J 765(2):114

    Article  ADS  Google Scholar 

  • Flaherty KM, Hughes AM, Teague R et al (2018) Turbulence in the TW Hya Disk. ApJ 856:117

    Article  ADS  Google Scholar 

  • Fricke K (1968) Instabilität stationärer rotation in sternen. ZAp 68:317

    ADS  Google Scholar 

  • Fromang S, Lyra W, Masset F (2011) Meridional circulation in turbulent protoplanetary disks. A&A 534:A107

    Article  ADS  Google Scholar 

  • Goldreich P, Schubert G (1967) Differential rotation in stars. ApJ 150:571

    Article  ADS  Google Scholar 

  • Goldreich P, Ward WR (1973) The formation of planetesimals. Astrophys J 183:1051. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=1973ApJ...183.1051G%5Cnpapers2://publication/doi/10.1086/152291

    Article  ADS  Google Scholar 

  • Goldreich P, Goodman J, Narayan R (1986) The stability of accretion tori – I. Long-wavelength modes of slender tori. MNRAS 221(2):339–364

    Article  ADS  Google Scholar 

  • Goodman J, Narayan R, Goldreich P (1987) The stability of accretion tori–II. Non-linear evolution to discrete planets. MNRAS 225(3):695–711

    Article  ADS  Google Scholar 

  • Gressel O, Turner NJ, Nelson RP, McNally CP (2015) Global simulations of protoplanetary disks with ohmic resistivity and ambipolar diffusion. ApJ 801:84

    Article  ADS  Google Scholar 

  • Haisch KE Jr, Lada EA, Lada CJ (2001) Disk frequencies and lifetimes in young clusters. Astrophys J Lett 553(2):L153. http://stacks.iop.org/1538-4357/553/i=2/a=L153

  • Heimpel M, Aurnou J, Wicht J (2005) Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438:193–196

    Article  ADS  Google Scholar 

  • Jacquet E, Balbus S, Latter H (2011) On linear dust-gas streaming instabilities in protoplanetary discs. MNRAS 415:3591–3598

    Article  ADS  Google Scholar 

  • Ji H, Burin M, Schartman E, Goodman J (2006) Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444:343–346

    Article  ADS  Google Scholar 

  • Johansen A, Youdin AN (2007) Protoplanetary disk turbulence driven by the streaming instability: nonlinear saturation and particle concentration. Astrophys J. http://iopscience.iop.org/0004-637X/662/1/627

  • Johansen A, Klahr H, Henning T (2006) Gravoturbulent formation of planetesimals. ApJ 636:1121–1134

    Article  ADS  Google Scholar 

  • Johansen A, Oishi JS, Mac Low MM et al (2007) Rapid planetesimal formation in turbulent circumstellar disks. Nature 448:1022–1025

    Article  ADS  Google Scholar 

  • Johansen A, Youdin A, Mac Low MM (2009) Particle clumping and planetesimal formation depend strongly on metallicity. ApJ 704:L75–L79

    Article  ADS  Google Scholar 

  • Johansen A, Jacquet E, Cuzzi JN et al (2010) New paradigms for asteroid formation 5(1972):2–3. http://arxiv.org/abs/1505.02941http://doi.org/10.2458/azu_uapress_9780816532131-ch025

    Google Scholar 

  • Johansen A, Klahr H, Henning T (2011) High-resolution simulations of planetesimal formation in turbulent protoplanetary discs. A&A 529:A62

    Article  ADS  Google Scholar 

  • Johansen A, Mac Low MM, Lacerda P, Bizzarro M (2015) Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci Adv 1(3):e1500109–e1500109. http://doi.org/10.1126/sciadv.1500109

    Article  ADS  Google Scholar 

  • Kaspi Y, Galanti E, Hubbard WB et al (2018) Jupiter’s atmospheric jet streams extend thousands of kilometres deep. Nature 555:223–226

    Article  ADS  Google Scholar 

  • Klahr H (2004) The global baroclinic instability in accretion disks. II. Local linear analysis. ApJ 606(2):1070–1082

    Google Scholar 

  • Klahr HH, Bodenheimer P (2003) Turbulence in accretion disks: vorticity generation and angular momentum transport via the global baroclinic instability. Astrophys J 582(2):869. http://stacks.iop.org/0004-637X/582/i=2/a=869

    Article  ADS  Google Scholar 

  • Klahr H, Hubbard A (2014) Convective overstability in radially stratified accretion disks under thermal relaxation. Astrophys J 788(1):21. http://stacks.iop.org/0004-637X/788/i=1/a=21

    Article  ADS  Google Scholar 

  • Klahr H, Schreiber A (2015) Linking the origin of asteroids to planetesimal formation in the solar nebula. Proc Int Astron Union 10(S318):1–8. http://www.journals.cambridge.org/abstract_S1743921315010406

    Article  Google Scholar 

  • Klahr H, Raettig N, Lyra W (2013) Disk weather. EPJ Web Conf 46:04,001

    Article  Google Scholar 

  • Latter H (2016) On the convective overstability in protoplanetary discs. Mon Not R Astron Soc 455(3):2608–2618

    Article  ADS  Google Scholar 

  • Lesur GRJ, Latter H (2016) On the survival of zombie vortices in protoplanetary discs. MNRAS 462:4549–4554

    Article  ADS  Google Scholar 

  • Lesur G, Papaloizou JCB (2010) The subcritical baroclinic instability in local accretion disc models. A&A 513:A60

    Article  ADS  Google Scholar 

  • Lesur G, Kunz MW, Fromang S (2014) Thanatology in protoplanetary discs. The combined influence of Ohmic, Hall, and ambipolar diffusion on dead zones. A&A 566:A56

    Article  ADS  Google Scholar 

  • Li ZY, Banerjee R, Pudritz RE et al (2014) The earliest stages of star and planet formation: core collapse, and the formation of disks and outflows. In: Beuther H, Klessen RS, Dullemond CP, Henning T (eds) Protostars and planets VI. University of Arizona Press, Tucson, pp 173–194

    Google Scholar 

  • Lin MK, Youdin AN (2015) Cooling requirements for the vertical shear instability in protoplanetary disks. ApJ 811:17

    Article  ADS  Google Scholar 

  • Luest R (1952) Die Entwicklung einer um einen Zentralkörper rotierenden Gasmasse. i. Lösungen der hydrodynamischen Gleichungen mit turbulenter Reibung. Zeitschrift Naturforschung Teil A 7:87–98

    ADS  MATH  Google Scholar 

  • Lyra W (2014) Convective overstability in accretion disks: three dimensional linear analysis and nonlinear saturation. Astrophys J 789(1):77

    Article  ADS  Google Scholar 

  • Lyra W, Klahr H (2011) The baroclinic instability in the context of layered accretion. Self-sustained vortices and their magnetic stability in local compressible unstratified models of protoplanetary disks. A&A 527:A138

    Article  ADS  Google Scholar 

  • Manger N, Klahr H (2018) Vortex formation and survival in protoplanetary disks subject to vertical shear instability. MNRAS, in press

    Google Scholar 

  • Marcus PS, Pei S, Jiang CH et al (2015) Zombie Vortex Instability. I. A purely hydrodynamic instability to resurrect the dead zones of protoplanetary disks. ApJ 808:87

    Article  ADS  Google Scholar 

  • Marcus PS, Pei S, Jiang CH, Barranco JA (2016) Zombie vortex instability. II. Thresholds to trigger instability and the properties of zombie turbulence in the dead zones of protoplanetary disks. ApJ 833:148

    Article  ADS  Google Scholar 

  • Meheut H, Keppens R, Casse F, Benz W (2012) Formation and long-term evolution of 3D vortices in protoplanetary discs. A&A 542:A9

    Article  ADS  Google Scholar 

  • Meltzer M (2015) The Cassini-Huygens visit to Saturn. Springer, Cham

    Book  Google Scholar 

  • Nakagawa Y, Sekiya M, Hayashi C (1986) Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus 67:375–390

    Article  ADS  Google Scholar 

  • Nelson RP, Gressel O, Umurhan OM (2012) Linear and nonlinear evolution of the vertical shear instability in accretion discs. Mon Not R Astron Soc 435(3):2610–2632

    Article  ADS  Google Scholar 

  • Ogihara M, Ida S, Morbidelli A (2007) Accretion of terrestrial planets from oligarchs in a turbulent disk. Icarus 188:522–534

    Article  ADS  Google Scholar 

  • Ormel CW, Klahr H (2010) The effect of gas drag on the growth of protoplanets. Astron Astrophys 520:A43

    Article  ADS  Google Scholar 

  • Pelletier G, Pudritz RE (1992) Hydromagnetic disk winds in young stellar objects and active galactic nuclei. ApJ 394:117–138

    Article  ADS  Google Scholar 

  • Petersen MR, Julien K, Stewart GR (2007a) Baroclinic vorticity production in protoplanetary disks. I. Vortex formation. ApJ 658(2):1236

    Article  ADS  Google Scholar 

  • Petersen MR, Stewart GR, Julien K (2007b) Baroclinic vorticity production in protoplanetary disks. II. Vortex growth and longevity. ApJ 658(2):1252

    Article  ADS  Google Scholar 

  • Pfeil T (2017) Stability constraints for protoplanetary disks. Bachelor Thesis, Heidelberg University & Max Planck Insititute for Astronomy

    Google Scholar 

  • Pfeil T, Klahr H (2018) Mapping the conditions for hydrodynamic instability on viscous models of protoplanetary disks. ApJ, submitted

    Google Scholar 

  • Pringle JE (1981) Accretion discs in astrophysics. Ann Rev Astron Astrophys 19:137–162

    Article  ADS  Google Scholar 

  • Pringle JE, King A (2007) Astrophysical flows. Cambridge University Press. http://www.ebook.de/de/product/5966154/james_e_pringle_andrew_king_astrophysical_flows.html

  • Pudritz RE, Norman CA (1986) Bipolar hydromagnetic winds from disks around protostellar objects. ApJ 301:571–586

    Article  ADS  Google Scholar 

  • Pudritz RE, Ouyed R, Fendt C Brandenburg A (2007) Disk winds, jets, and outflows: theoretical and computational foundations. In: Reipurth B, Jewitt D, Keil K (eds) Protostars planets V. University of Arizona Press, Tucson, pp. 277–294, 951pp

    Google Scholar 

  • Raettig N, Klahr H, Lyra W (2015) Particle trapping and streaming instability in vortices in protoplanetary disks. ApJ 804:35

    Article  ADS  Google Scholar 

  • Rayleigh L (1917) On the dynamics of revolving fluids. R Soc Lond Proc Ser A 93:148–154

    Article  ADS  Google Scholar 

  • Rüdiger G, Arlt R, Shalybkov D (2002) Hydrodynamic stability in accretion disks under the combined influence of shear and density stratification. Astron Astrophys 391(2): 781–787

    Article  ADS  Google Scholar 

  • Ryan BR, Gammie CF, Fromang S, Kestener P (2017) Resolution dependence of magnetorotational turbulence in the isothermal stratified shearing box. ApJ 840:6

    Article  ADS  Google Scholar 

  • Safronov V (1972) Evolution of the protoplanetary cloud and formation of the earth and the planets. Israel program for scientific translations, Jerusalem, p 11. http://www.getcited.org/pub/101392020

  • Schäfer U, Yang CC, Johansen A (2017) Initial mass function of planetesimals formed by the streaming instability. A&A 597:A69

    Article  ADS  Google Scholar 

  • Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337–355

    ADS  Google Scholar 

  • Shore SN (2007) Astrophysical hydrodynamics. Wiley VCH Verlag GmbH. http://www.ebook.de/de/product/5489098/steven_n_shore_astrophysical_hydrodynamics.html

  • Simon JB, Armitage PJ, Li R, Youdin AN (2016) The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. Astrophys J 822(1):55

    Article  ADS  Google Scholar 

  • Squire J, Hopkins PF (2018a) Resonant drag instabilities in protoplanetary disks: the streaming instability and new, faster-growing instabilities. MNRAS 477:5011–5040

    Article  ADS  Google Scholar 

  • Squire J, Hopkins PF (2018b) Resonant drag instability of grains streaming in fluids. ApJ 856:L15

    Article  ADS  Google Scholar 

  • Taylor GI (1923) Stability of a viscous liquid contained between two rotating cylinders. R Soc Lond Philos Trans Ser A 223:289–343

    Article  ADS  Google Scholar 

  • Testi L, Birnstiel T, Ricci L et al (2014) Dust evolution in protoplanetary disks. In: Beuther H, Klessen RS, Dullemond CP, Henning T (eds) Protostars and planets VI. University of Arizona Press, Tucson, pp 339–361

    Google Scholar 

  • Turner NJ, Fromang S, Gammie C et al (2014) Transport and accretion in planet-forming disks. In: Protostars and planets VI. University of Arizona Press. https://doi.org/10.2458/azu_uapress_9780816531240-ch018

    Google Scholar 

  • Urpin V, Brandenburg A (1998) Magnetic and vertical shear instabilities in accretion discs. MNRAS 294:399

    Article  ADS  Google Scholar 

  • van der Marel N, van Dishoeck EF, Bruderer S et al (2013) A major asymmetric dust trap in a transition disk. Science 340:1199–1202

    Article  ADS  Google Scholar 

  • Weidenschilling SJ (1977) Aerodynamics of solid bodies in the solar nebula. MNRAS 180:57–70

    Article  ADS  Google Scholar 

  • Weidenschilling SJ (1980) Dust to planetesimals – settling and coagulation in the solar nebula. Icarus 44:172–189

    Article  ADS  Google Scholar 

  • Whipple FL (1964) The history of the solar system. Proc Nat Acad Sci 52:565–594

    Article  ADS  Google Scholar 

  • Yang CC, Johansen A, Carrera D (2017) Concentrating small particles in protoplanetary disks through the streaming instability. A&A 606:A80

    Article  ADS  Google Scholar 

  • Youdin AN, Goodman J (2005) Streaming instabilities in protoplanetary disks. ApJ 620:459–469

    Article  ADS  Google Scholar 

  • Youdin AN, Johansen A (2007) Protoplanetary disk turbulence driven by the streaming instability: linear evolution and numerical methods. Astrophys J 662(1):613–626. http://arxiv.org/abs/astro-ph/0702625

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Klahr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Klahr, H., Pfeil, T., Schreiber, A. (2018). Instabilities and Flow Structures in Protoplanetary Disks: Setting the Stage for Planetesimal Formation. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_138

Download citation

Publish with us

Policies and ethics