Skip to main content

Atmospheric Retrieval of Exoplanets

  • Reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Exoplanetary atmospheric retrieval refers to the inference of atmospheric properties of an exoplanet given an observed spectrum. The atmospheric properties include the chemical compositions, temperature profiles, clouds/hazes, and energy circulation. These properties, in turn, can provide key insights into the atmospheric physicochemical processes of exoplanets as well as their formation mechanisms. Major advancements in atmospheric retrieval have been made in the last decade, thanks to a combination of state-of-the-art spectroscopic observations and advanced atmospheric modeling and statistical inference methods. These developments have already resulted in key constraints on the atmospheric H2O abundances, temperature profiles, and other properties for several exoplanets. Upcoming facilities such as the JWST will further advance this area. The present chapter is a pedagogical review of this exciting frontier of exoplanetary science. The principles of atmospheric retrievals of exoplanets are discussed in detail, including parametric models and statistical inference methods, along with a review of key results in the field. Some of the main challenges in retrievals with current observations are discussed along with new directions and the future landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the sun. ARA&A 47:481–522

    Article  ADS  Google Scholar 

  • Atreya SK, Crida A, Guillot T et al (2016) The origin and evolution of Saturn, with exoplanet perspective. ArXiv e-prints

    Google Scholar 

  • Barman T (2007) Identification of absorption features in an extrasolar planet atmosphere. ApJ 661:L191–L194

    ADS  Google Scholar 

  • Barman TS, Macintosh B, Konopacky QM, Marois C (2011) Clouds and chemistry in the atmosphere of extrasolar planet HR8799b. ApJ 733:65

    ADS  Google Scholar 

  • Barstow JK, Aigrain S, Irwin PGJ, Sing DK (2017) A consistent retrieval analysis of 10 Hot Jupiters observed in transmission. ApJ 834:50

    ADS  Google Scholar 

  • Benneke B, Seager S (2012) Atmospheric retrieval for super-earths: uniquely constraining the atmospheric composition with transmission spectroscopy. ApJ 753:100

    ADS  Google Scholar 

  • Benneke B, Seager S (2013) How to distinguish between cloudy Mini-Neptunes and water/volatile-dominated super-earths. ApJ 778:153

    ADS  Google Scholar 

  • Bétrémieux Y, Kaltenegger L (2015) Refraction in planetary atmospheres: improved analytical expressions and comparison with a new ray-tracing algorithm. MNRAS 451:1268–1283

    ADS  Google Scholar 

  • Birkby JL, de Kok RJ, Brogi M, Schwarz H, Snellen IAG (2017) Discovery of water at high spectral resolution in the atmosphere of 51 Peg b. AJ 153:138

    Article  ADS  Google Scholar 

  • Blecic P (2015) Observations, thermochemical calculations, and modeling of exoplanetary atmospheres. Ph.D. thesis, University of Central Florida

    Google Scholar 

  • Brogi M, Snellen IAG, de Kok RJ et al (2012) The signature of orbital motion from the dayside of the planet Ï„ Boötis b. Nature 486:502–504

    ADS  Google Scholar 

  • Brogi M, Line M, Bean J, Désert JM, Schwarz H (2017) A framework to combine low- and high-resolution spectroscopy for the atmospheres of transiting exoplanets. ApJ 839:L2

    ADS  Google Scholar 

  • Brown TM (2001) Transmission spectra as diagnostics of extrasolar giant planet atmospheres. ApJ 553:1006–1026

    ADS  Google Scholar 

  • Burrows A, Hubbard WB, Lunine JI, Liebert J (2001) The theory of brown dwarfs and extrasolar giant planets. Rev Mod Phys 73:719–765

    ADS  Google Scholar 

  • Burrows A, Hubeny I, Budaj J, Knutson HA, Charbonneau D (2007) Theoretical spectral models of the planet HD 209458b with a thermal inversion and water emission bands. ApJ 668: L171–L174

    ADS  Google Scholar 

  • Burrows A, Budaj J, Hubeny I (2008) Theoretical spectra and light curves of close-in extrasolar giant planets and comparison with data. ApJ 678:1436–1457

    ADS  Google Scholar 

  • Charbonneau D, Knutson HA, Barman T et al (2008) The broadband infrared emission spectrum of the exoplanet HD 189733b. ApJ 686:1341–1348

    ADS  Google Scholar 

  • Cowan NB, Machalek P, Croll B et al (2012) Thermal phase variations of WASP-12b: defying predictions. ApJ 747:82

    ADS  Google Scholar 

  • Crossfield IJM, Barman T, Hansen BMS, Tanaka I, Kodama T (2012) Re-evaluating WASP-12b: strong emission at 2.315 μm, deeper occultations, and an isothermal atmosphere. ApJ 760:140

    ADS  Google Scholar 

  • Cubillos P (2015) In pursuit of new worlds: searches for and studies of transiting exoplanets from three space-based observatories. Ph.D. thesis, University of Central Florida

    Google Scholar 

  • de Wit J (2015) Maps and masses of transiting exoplanets: towards new insights into atmospheric and interior properties of planets. ArXiv e-prints

    Google Scholar 

  • Deming D, Wilkins A, McCullough P et al (2013) Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the wide field camera-3 on the hubble space telescope. ApJ 774:95

    ADS  Google Scholar 

  • Diamond-Lowe H, Stevenson KB, Bean JL, Line MR, Fortney JJ (2014) New analysis indicates no thermal inversion in the atmosphere of HD 209458b. ApJ 796:66

    ADS  Google Scholar 

  • Eastman J, Gaudi BS, Agol E (2013) EXOFAST: a fast exoplanetary fitting suite in IDL. PASP 125:83

    ADS  Google Scholar 

  • Evans TM, Sing DK, Kataria T et al (2017) An ultrahot gas-giant exoplanet with a stratosphere. Nature 548:58–61

    ADS  Google Scholar 

  • Feng YK, Line MR, Fortney JJ et al (2016) The impact of non-uniform thermal structure on the interpretation of exoplanet emission spectra. ApJ 829:52

    ADS  Google Scholar 

  • Feroz F, Hobson MP, Bridges M (2009) MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. MNRAS 398:1601–1614

    ADS  Google Scholar 

  • Fletcher LN, Orton GS, Teanby NA, Irwin PGJ, Bjoraker GL (2009) Methane and its isotopologues on Saturn from Cassini/CIRS observations. Icarus 199:351–367

    ADS  Google Scholar 

  • Ford EB (2005) Quantifying the uncertainty in the orbits of extrasolar planets. AJ 129:1706–1717

    ADS  Google Scholar 

  • Ford EB (2006) Improving the efficiency of Markov chain monte carlo for analyzing the orbits of extrasolar planets. ApJ 642:505–522

    ADS  Google Scholar 

  • Fortney JJ, Lodders K, Marley MS, Freedman RS (2008) A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. ApJ 678:1419–1435

    ADS  Google Scholar 

  • Fortney JJ, Shabram M, Showman AP et al (2010) Transmission spectra of three-dimensional hot jupiter model atmospheres. ApJ 709:1396–1406

    ADS  Google Scholar 

  • Fraine J, Deming D, Benneke B et al (2014) Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet. Nature 513:526–529

    ADS  Google Scholar 

  • Gandhi S, Madhusudhan N (2017) GENESIS: new self-consistent models of exoplanetary spectra. ArXiv e-prints

    Google Scholar 

  • Gandhi S, Madhusudhan N (2018) Retrieval of exoplanet emission spectra with HyDRA. MNRAS 474:271–288

    ADS  Google Scholar 

  • Greene TP, Line MR, Montero C et al (2016) Characterizing transiting exoplanet atmospheres with JWST. ApJ 817:17

    ADS  Google Scholar 

  • Grillmair CJ, Burrows A, Charbonneau D et al (2008) Strong water absorption in the dayside emission spectrum of the planet HD189733b. Nature 456:767–769

    ADS  Google Scholar 

  • Guillot T (2010) On the radiative equilibrium of irradiated planetary atmospheres. A&A 520:A27

    ADS  MATH  Google Scholar 

  • Haynes K, Mandell AM, Madhusudhan N, Deming D, Knutson H (2015) Spectroscopic evidence for a temperature inversion in the dayside atmosphere of hot jupiter WASP-33b. ApJ 806:146

    ADS  Google Scholar 

  • Heng K, Kitzmann D (2017) The theory of transmission spectra revisited: a semi-analytical method for interpreting WFC3 data and an unresolved challenge. MNRAS 470:2972–2981

    ADS  Google Scholar 

  • Heng K, Marley M (2017) Radiative transfer for exoplanet atmospheres. ArXiv e-prints

    Google Scholar 

  • Hubbard WB, Fortney JJ, Lunine JI et al (2001) Theory of extrasolar giant planet transits. ApJ 560:413–419

    ADS  Google Scholar 

  • Hubeny I, Burrows A, Sudarsky D (2003) A possible bifurcation in atmospheres of strongly irradiated stars and planets. ApJ 594:1011–1018

    ADS  Google Scholar 

  • Irwin PGJ, Teanby NA, de Kok R et al (2008) The NEMESIS planetary atmosphere radiative transfer and retrieval tool. J Quant Spectr Rad Transf 109:1136–1150

    ADS  Google Scholar 

  • Karkoschka E, Tomasko MG (2011) The haze and methane distributions on Neptune from HST-STIS spectroscopy. Icarus 211:780–797

    ADS  Google Scholar 

  • Knutson HA, Charbonneau D, Allen LE, Burrows A, Megeath ST (2008) The 3.6–8.0 μm broadband emission spectrum of HD 209458b: evidence for an atmospheric temperature inversion. ApJ 673:526–531

    ADS  Google Scholar 

  • Knutson HA, Charbonneau D, Burrows A, O’Donovan FT, Mandushev G (2009) Detection of a temperature inversion in the broadband infrared emission spectrum of TrES-4. ApJ 691: 866–874

    ADS  Google Scholar 

  • Knutson HA, Lewis N, Fortney JJ et al (2012) 3.6 and 4.5 μm phase curves and evidence for non-equilibrium chemistry in the atmosphere of extrasolar planet HD 189733b. ApJ 754:22

    ADS  Google Scholar 

  • Knutson HA, Benneke B, Deming D, Homeier D (2014) A featureless transmission spectrum for the Neptune-mass exoplanet GJ436b. Nature 505:66–68

    ADS  Google Scholar 

  • Konopacky QM, Barman TS, Macintosh BA, Marois C (2013) Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere. Science 339:1398–1401

    ADS  Google Scholar 

  • Kreidberg L, Bean JL, Désert JM et al (2014a) Clouds in the atmosphere of the super-earth exoplanet GJ1214b. Nature 505:69–72

    ADS  Google Scholar 

  • Kreidberg L, Bean JL, Désert JM et al (2014b) A precise water abundance measurement for the hot Jupiter WASP-43b. ApJ 793:L27

    ADS  Google Scholar 

  • Kreidberg L, Line MR, Bean JL et al (2015) A detection of water in the transmission spectrum of the hot Jupiter WASP-12b and implications for its atmospheric composition. ApJ 814:66

    ADS  Google Scholar 

  • Lanotte AA, Gillon M, Demory BO et al (2014) A global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b. A&A 572:A73

    ADS  Google Scholar 

  • Lavie B, Mendonça JM, Mordasini C et al (2017) HELIOS-RETRIEVAL: an open-source, nested sampling atmospheric retrieval code; application to the HR 8799 exoplanets and inferred constraints for planet formation. AJ 154:91

    ADS  Google Scholar 

  • Lecavelier Des Etangs A, Pont F, Vidal-Madjar A, Sing D (2008) Rayleigh scattering in the transit spectrum of HD 189733b. A&A 481:L83–L86

    ADS  Google Scholar 

  • Lee JM, Fletcher LN, Irwin PGJ (2012) Optimal estimation retrievals of the atmospheric structure and composition of HD 189733b from secondary eclipse spectroscopy. MNRAS 420:170–182

    ADS  Google Scholar 

  • Lee JM, Heng K, Irwin PGJ (2013) Atmospheric retrieval analysis of the directly imaged exoplanet HR 8799b. ApJ 778:97

    ADS  Google Scholar 

  • Lee JM, Irwin PGJ, Fletcher LN, Heng K, Barstow JK (2014) Constraining the atmospheric composition of the day-night terminators of HD 189733b: atmospheric retrieval with aerosols. ApJ 789:14

    ADS  Google Scholar 

  • Line MR, Parmentier V (2016) The influence of nonuniform cloud cover on transit transmission spectra. ApJ 820:78

    ADS  Google Scholar 

  • Line MR, Zhang X, Vasisht G et al (2012) Information content of exoplanetary transit spectra: an initial look. ApJ 749:93

    ADS  Google Scholar 

  • Line MR, Wolf AS, Zhang X et al (2013) A systematic retrieval analysis of secondary eclipse spectra. I. A comparison of atmospheric retrieval techniques. ApJ 775:137

    ADS  Google Scholar 

  • Line MR, Knutson H, Wolf AS, Yung YL (2014) A systematic retrieval analysis of secondary eclipse spectra. II. A uniform analysis of nine planets and their C to O ratios. ApJ 783:70

    ADS  Google Scholar 

  • Line MR, Teske J, Burningham B, Fortney JJ, Marley MS (2015) Uniform atmospheric retrieval analysis of ultracool dwarfs. I. Characterizing benchmarks, Gl 570D and HD 3651B. ApJ 807:183

    ADS  Google Scholar 

  • Line MR, Stevenson KB, Bean J et al (2016) No thermal inversion and a solar water abundance for the hot Jupiter HD 209458b from HST/WFC3 spectroscopy. AJ 152:203

    ADS  Google Scholar 

  • Lupu RE, Marley MS, Lewis N et al (2016) Developing atmospheric retrieval methods for direct imaging spectroscopy of gas giants in reflected light. I. Methane abundances and basic cloud properties. AJ 152:217

    ADS  Google Scholar 

  • MacDonald RJ, Madhusudhan N (2017a) HD 209458b in new light: evidence of nitrogen chemistry, patchy clouds and sub-solar water. MNRAS 469:1979–1996

    ADS  Google Scholar 

  • MacDonald RJ, Madhusudhan N (2017b) Signatures of nitrogen chemistry in hot jupiter atmospheres. ApJ 850:L15

    ADS  Google Scholar 

  • Madhusudhan N (2012) C/O Ratio as a dimension for characterizing exoplanetary atmospheres. ApJ 758:36

    ADS  Google Scholar 

  • Madhusudhan N, Redfield S (2015) Optimal measures for characterizing water-rich super-Earths. Int. J. Astrobiol. 14:177–189

    Google Scholar 

  • Madhusudhan N, Seager S (2009) A temperature and abundance retrieval method for exoplanet atmospheres. ApJ 707:24–39

    ADS  Google Scholar 

  • Madhusudhan N, Seager S (2010) On the inference of thermal inversions in hot jupiter atmospheres. ApJ 725:261–274

    ADS  Google Scholar 

  • Madhusudhan N, Seager S (2011) High metallicity and non-equilibrium chemistry in the dayside atmosphere of hot-neptune GJ 436b. ApJ 729:41

    ADS  Google Scholar 

  • Madhusudhan N, Harrington J, Stevenson KB et al (2011a) A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b. Nature 469:64–67

    ADS  Google Scholar 

  • Madhusudhan N, Mousis O, Johnson TV, Lunine JI (2011b) Carbon-rich giant planets: atmospheric chemistry, thermal inversions, spectra, and formation conditions. ApJ 743:191

    ADS  Google Scholar 

  • Madhusudhan N, Crouzet N, McCullough PR, Deming D, Hedges C (2014a) H2O abundances in the atmospheres of three hot Jupiters. ApJ 791:L9

    ADS  Google Scholar 

  • Madhusudhan N, Knutson H, Fortney JJ, Barman T (2014b) Exoplanetary atmospheres. Protostars and planets VI, pp 739–762

    Google Scholar 

  • Madhusudhan N, Agúndez M, Moses JI, Hu Y (2016) Exoplanetary atmospheres–chemistry, formation conditions, and habitability. Space Sci Rev 205:285–348

    ADS  Google Scholar 

  • Mandell AM, Haynes K, Sinukoff E et al (2013) Exoplanet Transit Spectroscopy Using WFC3: WASP-12 b, WASP-17 b, and WASP-19 b. ApJ 779:128

    ADS  Google Scholar 

  • Marley MS, Saumon D, Cushing M et al (2012) Masses, radii, and cloud properties of the HR 8799 planets. ApJ 754:135

    ADS  Google Scholar 

  • McCullough P, MacKenty J (2012) Considerations for using Spatial Scans with WFC3. Tech. rep.

    Google Scholar 

  • McCullough PR, Crouzet N, Deming D, Madhusudhan N (2014) Water vapor in the spectrum of the extrasolar planet HD 189733b. I. The transit. ApJ 791:55

    Google Scholar 

  • Miller-Ricci E, Seager S, Sasselov D (2009) The atmospheric signatures of super-earths: how to distinguish between hydrogen-rich and hydrogen-poor atmospheres. ApJ 690: 1056–1067

    ADS  Google Scholar 

  • Mollière P, van Boekel R, Bouwman J et al (2017) Observing transiting planets with JWST. Prime targets and their synthetic spectral observations. A&A 600:A10

    ADS  Google Scholar 

  • Moses JI, Line MR, Visscher C et al (2013a) Compositional diversity in the atmospheres of hot neptunes, with application to GJ 436b. ApJ 777:34

    ADS  Google Scholar 

  • Moses JI, Madhusudhan N, Visscher C, Freedman RS (2013b) Chemical Consequences of the C/O Ratio on Hot Jupiters: examples from WASP-12b, CoRoT-2b, XO-1b, and HD 189733b. ApJ 763:25

    ADS  Google Scholar 

  • Oreshenko M, Lavie B, Grimm SL et al (2017) Retrieval analysis of the emission spectrum of WASP-12b: sensitivity of outcomes to prior assumptions and implications for formation history. ApJ 847:L3

    ADS  Google Scholar 

  • Pinhas A, Madhusudhan N (2017) On signatures of clouds in exoplanetary transit spectra. ArXiv e-prints

    Google Scholar 

  • Pont F, Knutson H, Gilliland RL, Moutou C, Charbonneau D (2008) Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the HubbleSpaceTelescope. MNRAS 385:109–118

    ADS  Google Scholar 

  • Pont F, Sing DK, Gibson NP et al (2013) The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations. MNRAS 432:2917–2944

    ADS  Google Scholar 

  • Robinson TD (2017) A theory of exoplanet transits with light scattering. ApJ 836:236

    ADS  Google Scholar 

  • Rodgers CD (2000) Inverse methods for atmospheric sounding – theory and practice. Series on atmospheric oceanic and planetary physics, vol 2. World Scientific Publishing Co Pte Ltd., Edited by Clive D Rodgers. ISBN: 9789812813718

    Google Scholar 

  • Seager S (2010) Exoplanet atmospheres: physical processes. Princeton University Press, Princeton

    Google Scholar 

  • Seager S, Sasselov DD (2000) Theoretical transmission spectra during extrasolar giant planet transits. ApJ 537:916–921

    ADS  Google Scholar 

  • Sedaghati E, Boffin HMJ, MacDonald RJ et al (2017) Detection of titanium oxide in the atmosphere of a hot Jupiter. Nature 549:238–241

    ADS  Google Scholar 

  • Shaw JR, Bridges M, Hobson MP (2007) Efficient Bayesian inference for multimodal problems in cosmology. MNRAS 378:1365–1370

    ADS  Google Scholar 

  • Sheppard KB, Mandell AM, Tamburo P et al (2017) Evidence for a dayside thermal inversion and high metallicity for the hot Jupiter WASP-18b. ApJ 850:L32

    ADS  Google Scholar 

  • Sing DK, Fortney JJ, Nikolov N et al (2016) A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529:59–62

    ADS  Google Scholar 

  • Skilling J (2006) Nested sampling for general Bayesian computation. Bayesian Anal 1(4):833–859. https://doi.org/10.1214/06-BA127

    MathSciNet  MATH  Google Scholar 

  • Snellen IAG, de Kok RJ, de Mooij EJW, Albrecht S (2010) The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465:1049–1051

    ADS  Google Scholar 

  • Sromovsky LA, Fry PM, Kim JH (2011) Methane on Uranus: The case for a compact CH 4 cloud layer at low latitudes and a severe CH 4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy. Icarus 215:292–312

    ADS  Google Scholar 

  • Stevenson KB, Harrington J, Nymeyer S et al (2010) Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b. Nature 464:1161–1164

    ADS  Google Scholar 

  • Stevenson KB, Bean JL, Madhusudhan N, Harrington J (2014a) Deciphering the atmospheric composition of WASP-12b: a comprehensive analysis of its dayside emission. ApJ 791:36

    ADS  Google Scholar 

  • Stevenson KB, Désert JM, Line MR et al (2014b) Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy. Science 346:838–841

    ADS  Google Scholar 

  • Swain MR, Vasisht G, Tinetti G (2008) The presence of methane in the atmosphere of an extrasolar planet. Nature 452:329–331

    ADS  Google Scholar 

  • Tegmark M, Strauss MA, Blanton MR et al (2004) Cosmological parameters from SDSS and WMAP. Phys Rev D 69(10):103501

    ADS  Google Scholar 

  • Tegmark M, Eisenstein DJ, Strauss MA et al (2006) Cosmological constraints from the SDSS luminous red galaxies. Phys Rev D 74(12):123507

    ADS  Google Scholar 

  • Tinetti G, Vidal-Madjar A, Liang MC et al (2007) Water vapour in the atmosphere of a transiting extrasolar planet. Nature 448:169–171

    ADS  Google Scholar 

  • Todorov KO, Line MR, Pineda JE et al (2016) The water abundance of the directly imaged substellar companion κ and b retrieved from a near infrared spectrum. ApJ 823:14

    ADS  Google Scholar 

  • Trotta R (2017) Bayesian methods in cosmology. ArXiv e-prints

    Google Scholar 

  • Wakeford HR, Sing DK (2015) Transmission spectral properties of clouds for hot Jupiter exoplanets. A&A 573:A122

    ADS  Google Scholar 

  • Wakeford HR, Sing DK, Kataria T et al (2017) HAT-P-26b: a Neptune-mass exoplanet with a well-constrained heavy element abundance. Science 356:628–631

    ADS  Google Scholar 

  • Wakeford HR, Sing DK, Deming D et al (2018) The complete transmission spectrum of WASP-39b with a precise water constraint. AJ 155:29

    ADS  Google Scholar 

  • Waldmann IP (2016) Dreaming of atmospheres. ApJ 820:107

    ADS  Google Scholar 

  • Waldmann IP, Rocchetto M, Tinetti G et al (2015a) Tau-REx II: retrieval of emission spectra. ApJ 813:13

    ADS  Google Scholar 

  • Waldmann IP, Tinetti G, Rocchetto M et al (2015b) Tau-REx I: a next generation retrieval code for exoplanetary atmospheres. ApJ 802:107

    ADS  Google Scholar 

  • Wong MH, Mahaffy PR, Atreya SK, Niemann HB, Owen TC (2004) Updated Galileo probe mass Spectrometer measurements of Carbon, Oxygen, Nitrogen, and Sulfur on Jupiter. Icarus 171:153–170

    ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the tireless efforts by various groups working on exoplanetary atmospheric retrieval which has led to the exponential rise in this area in the last 8 years. The author thanks A. Pinhas for help with Table 1 and Fig. 3, A. Pinhas and R. MacDonald for help with references, and L. Welbanks for help with Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikku Madhusudhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Madhusudhan, N. (2018). Atmospheric Retrieval of Exoplanets. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_104

Download citation

Publish with us

Policies and ethics