Skip to main content

History of Electroporation

  • Chapter
  • First Online:
Irreversible Electroporation in Clinical Practice

Abstract

Electroporation phenomena can be traced back to the eighteenth century when red spots on human animal skin (Lichtenberg figures) were observed in the areas where electric fields were applied. Once the cause of this phenomenon was understood and control over the parameters that produce electric fields was achieved, a quick adoption of the use of pulsed electric fields to kill microbes was seen in the area of food and water sterilization. Biomedical applications soon followed where electric fields began to be used to control movement of biological material: cells were brought in close proximity and fused together through membrane destabilization (electrofusion), DNA material was introduced into cells through transient pores in the membrane (electrogenetherapy), and chemotherapeutic drugs were directly delivered to cells (electrochemotherapy). These applications fall under the energy regime known as reversible electroporation in which temporary cell membrane destabilization is achieved. Irreversible electroporation (IRE) uses an energy regime much higher than that of reversible electroporation and induces cell death via various mechanisms. Since the postulation that IRE can be used to ablate substantial volumes in such a manner that it does not induce significant traditional thermal damage, it has been widely investigated moving from in vitro studies, to in vivo animal studies, and finally to human patients through clinical trials. Its nonthermal mechanism to induce cell death makes it an attractive modality to safely treat unresectable tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Reilly JP. Applied bioelectricity: from electrical stimulation to electropathology. New York: Springer; 1998.

    Book  Google Scholar 

  2. Prausnitz MR. A practical assessment of transdermal drug delivery by skin electroporation. Adv Drug Deliv Rev. 1999;35:61–76.

    Article  CAS  PubMed  Google Scholar 

  3. Vanbever R, Préat V. In vivo efficacy and safety of skin electroporation. Adv Drug Deliv Rev. 1999;35:77–88.

    Article  CAS  PubMed  Google Scholar 

  4. Noad HM. Lectures on electricity; comprising galvanism, magnetism, electro-magnetism, magneto- and thermo- electricity, and electo-physiology. 3rd ed. London: George Knight and Sons; 1849.

    Google Scholar 

  5. Fuller GW. Report on the investigations into the purification of the Ohio river water at Louisville Kentucky. New York: D. Van Nostrand Company; 1898.

    Google Scholar 

  6. Rockwell AD. The medical and surgical uses of electricity: including the X-ray, Finsen light, vibratory therapeutics, and high-frequency currents. New York: E.B. Treat & Company; 1903.

    Google Scholar 

  7. Abidor IG, Li LH, Hui SW. Studies of cell pellets: II. Osmotic properties, electroporation, and related phenomena: membrane interactions. Biophys J. 1994;67:427–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jex-Blake AJ. Death by electric currents and by lightning. The Goulstonian lectures for 1913. Br Med J. 1913;11:425–552., 492–498, 548–552, 601–603.

    Article  Google Scholar 

  9. O’Keefe Gatewood M, Zane RD. Lightning injuries. Emerg Med Clin North Am. 2004;22:369–403.

    Article  PubMed  Google Scholar 

  10. McKinley GM. Short electric wave radiation in biology. In: Duggar BM, editor. Biological effects of radiation, vol. 1. New York: McGraw-Hill Book Co; 1936. p. 541–58.

    Google Scholar 

  11. Nyrop JE. A specific effect of high-frequency electric currents on biological objects. Nature. 1946;157:51–2.

    Article  CAS  PubMed  Google Scholar 

  12. Hodgkin AL. The ionic basis of electrical activity in nerve and muscle. Biol Rev Camb Philos Soc. 1951;26:339–409.

    Article  CAS  Google Scholar 

  13. Frankenhaeuser B, Widén L. Anode break excitation in desheathed frog nerve. J Physiol. 1956;131:243–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Biedermann W. Electro-physiology, vol. 2. London: Macmillan; 1898.

    Google Scholar 

  15. Stämpfli R, Willi M. Membrane potential of a Ranvier node measured after electrical destruction of its membrane. Exp Dermatol. 1957;13:297–8.

    Google Scholar 

  16. Stämpfli R. Reversible electrical breakdown of the excitable membrane of a Ranvier node. An Acad Bras Cienc. 1957;30:57–63.

    Google Scholar 

  17. Doevenspeck H. Influencing cells and cell walls by electrostatic impulses. Fleishwirtshaft. 1961;13:986–7.

    Google Scholar 

  18. Sale AJH, Hamilton WA. Effects of high electric fields on microorganisms. 1. Killing of bacteria and yeasts. Biochim Biophys Acta. 1967;148:781–8.

    Article  Google Scholar 

  19. Hamilton WA, Sale AJH. Effects of high electric fields on microorganisms. 2. Mechanism of action of the lethal effect. Biochim Biophys Acta. 1967;148:789–800.

    Article  CAS  Google Scholar 

  20. Sale AJH, Hamilton WA. Effects of high electric fields on microorganisms. 3. Lysis of erythrocytes and protoplasts. Biochim Biophys Acta. 1968;163:37–43.

    Article  CAS  PubMed  Google Scholar 

  21. Zimmermann U, Pilwat G, Riemann F. Dielectric breakdown of cell membranes. Biophys J. 1974;14:881–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Riemann F, Zimmermann U, Pilwat G. Release and uptake of haemoglobin and ions in red blood cells induced by dielectric breakdown. Biochim Biophys Acta. 1975;394:449–62.

    Article  CAS  PubMed  Google Scholar 

  23. Kinosita KJ, Tsong TY. Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature. 1977;268:438–41.

    Article  PubMed  Google Scholar 

  24. Belov SV. Effects of high-frequency current parameters on tissue coagulation. Biomed Eng. 1978;12:209–11.

    Article  Google Scholar 

  25. Zimmermann U. Electric field-mediated fusion and related electrical phenomena. Biochim Biophys Acta. 1982;694:227–77.

    Article  CAS  PubMed  Google Scholar 

  26. Neumann E, Schaeffer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lymphoma cells by electroporation in high electric fields. EMBO J. 1982;1:841–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Potter H, Weir L, Leder P. Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci U S A. 1984;81:7161–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Orlowskim S, Belehradek JJ, Paoletti C, Mir LM. Transient electropermeabilization of cells in culture. Increase of the cytotoxicity of anticancer drugs. Biochem Pharmacol. 1988;34:4727–33.

    Article  Google Scholar 

  29. Okino M, Mohri H. Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Jpn J Cancer Res. 1987;78:1319–21.

    CAS  PubMed  Google Scholar 

  30. Lee RC, Kolodney MS. Electrical injury mechanisms: electrical breakdown of cell membranes. Plast Reconstr Surg. 1987;80:672–9.

    Article  CAS  PubMed  Google Scholar 

  31. Lee RC, Gaylor DC, Bhatt D, Israel DA. Role of cell membrane rupture in the pathogenesis of electrical trauma. J Surg Res. 1988;44:709–19.

    Article  CAS  PubMed  Google Scholar 

  32. Powell KT, Morgenthaler AW, Weaver JC. Tissue electroporation. Observation of reversible electrical breakdown in viable frog skin. Biophys J. 1989;56:1163–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Titomirov AV, Sukharev S, Kistanova E. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta. 1991;1088:131–4.

    Article  CAS  PubMed  Google Scholar 

  34. Mir LM, Orlowski S, Belehradek JJ, Paoletti C. Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer. 1991;27:68–72.

    Article  CAS  PubMed  Google Scholar 

  35. Mir LM, Belehradek M, Domenge C, Orlowski S, Poddevin B, Belehradek JJ, et al. Electrochemotherapy, a new antitumor treatment: first clinical trial. C R Acad Sci III. 1991;313:613–8.

    CAS  PubMed  Google Scholar 

  36. Prausnitz MR, Bose VG, Langer R, Weaver JC. Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc Natl Acad Sci U S A. 1993;90:10504–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bhatt DL, Gaylor DC, Lee RC. Rhabdomyolysis due to pulsed electric fields. Plast Reconstr Surg. 1990;86(1):1–11., pp. 1–11.

    Article  CAS  PubMed  Google Scholar 

  38. Abramov GS, Bier M, Capelli-Schellpfeffer M, Lee RC. Alteration in sensory nerve function following electrical shock. Burns. 1996;22:602–6.

    Article  CAS  PubMed  Google Scholar 

  39. Bier M, Hammer SM, Canaday DJ, Lee RC. Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells. Bioelectromagnetics. 1999;20:194–201.

    Article  CAS  PubMed  Google Scholar 

  40. Lee RC, River LP, Pan FS, Ji L, Wollmann RL. Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc Natl Acad Sci U S A. 1992;89:4524–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Piñero J, Lopez-Baena M, Ortiz T, Cortes F. Apoptotic and necrotic cell death are both induced by electroporation in HL60 human promyeloid leukaemia cells. Apoptosis. 1997;2:330–6.

    Article  PubMed  Google Scholar 

  42. Schoenbach KH, Peterkin FE, Alden RWI, Beebe SJ. The effect of pulsed electric fields on biological cells: experiments and applications. IEEE Trans Plasma Sci. 1997;25:284–92.

    Article  Google Scholar 

  43. Schoenbach KH, Beebe SJ, Buescher ES. Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics. 2001;22:440–8.

    Article  CAS  PubMed  Google Scholar 

  44. Miklavcic D, Beravs K, Semrov D, Cemazar M, Demsar F, Sersa G. The importance of electric field distribution for effective in vivo electroporation of tissues. Biophys J. 1998;74:2152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ramirez LH, Orlowski S, An D, Bindoula G, Dzodic R, Ardouin P, et al. Electrochemotherapy on liver tumours in rabbits. Br J Cancer. 1998;77:2104–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gehl J, Skovsgaard T, Mir LM. Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochim Biophys Acta. 2002;1569:51–8.

    Article  CAS  PubMed  Google Scholar 

  47. Al-Khadra A, Nikolski V, Efimov IR. The role of electroporation in defibrillation. Circ Res. 2000;87:797–804.

    Article  CAS  PubMed  Google Scholar 

  48. Davalos RV, Rubinsky B. Tissue ablation with irreversible electroporation. US Application 10/571,162. Filed: 12/24/04 Issued 11/1/11 Patent No. 8,048,067. 2004.

    Google Scholar 

  49. Yao C, Sun C, Mi Y, Xiong L, Wang S. Experimental studies on killing and inhibiting effects of steep pulsed electric field (SPEF) to target cancer cell and solid tumor. IEEE Trans Plasma Sci. 2004;32:1626–33.

    Article  Google Scholar 

  50. Davalos RV, Mir LM, Rubinsky B. Tissue ablation with irreversible electroporation. Ann Biomed Eng. 2005;33:223.

    Article  CAS  PubMed  Google Scholar 

  51. Rubinsky B, Onik G, Mikus P. Irreversible electroporation: a new ablation modality – clinical implications. Technol Cancer Res Treat. Feb 2007;6:37–48.

    Article  PubMed  Google Scholar 

  52. Edd JF, Davalos RV. Mathematical modeling of irreversible electroporation for treatment planning. Technol Cancer Res Treat. 2007;6:275–86.

    Article  PubMed  Google Scholar 

  53. Al-Sakere B, Bernat C, Andre F, Connault E, Opolon P, Davalos RV, et al. A study of the immunological response to tumor ablation with irreversible electroporation. Technol Cancer Res Treat. 2007;6:301–6.

    Article  CAS  PubMed  Google Scholar 

  54. Al-Sakere B, André F, Bernat C, Connault E, Opolon P, Davalos RV, et al. Tumor ablation with irreversible electroporation. PLoS One. 2007;2:e1135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lavee J, Onik G, Mikus P, Rubinsky B. A novel nonthermal energy source for surgical epicardial atrial ablation: irreversible electroporation. Heart Surg Forum. 2007;10:E162–7.

    Article  PubMed  Google Scholar 

  56. Onik G, Rubinsky B, editors. Irreversible electroporation: first patient experience focal therapy of prostate cancer (irreversible electroporation). Berlin: Springer; 2010. p.^pp. Pages

    Google Scholar 

  57. Thomson KR, Cheung W, Ellis SJ, Federman D, Kavnoudias H, Loader-Oliver D, et al. Investigation of the safety of irreversible electroporation in humans. J Vasc Interv Radiol. 2011;22:611–21.

    Article  PubMed  Google Scholar 

  58. Martin RCG, Kwon D, Chalikonda S, Sellers M, Kotz E, Scoggins C, et al. Treatment of 200 locally advanced (stage III) pancreatic adenocarcinoma patients with irreversible electroporation: safety and efficacy. Ann Surg. 2015;262:486–94.

    Article  PubMed  Google Scholar 

  59. Nollet JA. Recherches sur les causes particulieres des phénoménes électriques. Paris: Chez H.L. Guerin & L.F. Delatour; 1754.

    Google Scholar 

  60. Ivorra A, Rubinsky B. Historical review of irreversible electroporation in medicine. In: Boris Rubinsky, editor. Irreversible electroporation. Springer, Berlin; 2010. p. 1–21.

    Google Scholar 

  61. Malik MA, Ghaffar A, Malik SA. Water purification by electrical discharges. Plasma Sources Sci Technol. 2001;10:82.

    Article  CAS  Google Scholar 

  62. Eliasson B, Hirth M, Kogelschatz U. Ozone synthesis from oxygen in dielectric barrier discharges. J Phys D Appl Phys. 1987;20:1421.

    Article  CAS  Google Scholar 

  63. Liu C, Xie X, Zhao W, Liu N, Maraccini PA, Sassoubre LM, et al. Conducting nanosponge electroporation for affordable and high-efficiency disinfection of bacteria and viruses in water. Nano Lett. 2013;13:4288–93.

    Article  CAS  PubMed  Google Scholar 

  64. Liu C, Xie X, Zhao W, Yao J, Kong D, Boehm AB, et al. Static electricity powered copper oxide nanowire microbicidal electroporation for water disinfection. Nano Lett. 2014;14:5603–8.

    Article  CAS  PubMed  Google Scholar 

  65. Toepfl S, Mathys A, Heinz V, Knorr D. Review: potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Rev Intl. 2006;22:405–23.

    Article  CAS  Google Scholar 

  66. Saulis G. Electroporation of cell membranes: the fundamental effects of pulsed electric fields in food processing. Food Eng Rev. 2010;2:52–73.

    Article  Google Scholar 

  67. Mahnič-Kalamiza S, Vorobiev E, Miklavčič D. Electroporation in food processing and biorefinery. J Membr Biol. 2014;247:1279–304.

    Article  PubMed  CAS  Google Scholar 

  68. Burton H. A survey of literature on bacterial effects of short electromagnetic waves. Shinfield: National Institute for Research in Dairying; 1949.

    Google Scholar 

  69. Maxwell JC. A treatise on electricity and magnetism. 3rd ed. Oxford: Clarendon Press; 1904.

    Google Scholar 

  70. Cole KS. Electric impedance of suspensions of spheres. J Gen Physiol. 1928;12:29–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Miklavcic D, Kotnik T. Electroporation for electrochemotherapy and gene therapy. In: Rosch PJ, Markov MS, editors. Bioelectromagnetic medicine. New York: Informa Health Care; 2004. p. 637–56.

    Google Scholar 

  72. Neumann E, Rosenheck K. Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol. 1972;29:279–90.

    Article  Google Scholar 

  73. Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek J, Mir LM. Electrochemotherapy, a new antitumor treatment. First clinical phase I–II trial. Cancer. 1993;72:3694–700.

    Article  CAS  PubMed  Google Scholar 

  74. Mali B, Jarm T, Snoj M, Sersa G, Miklavcic D. Antitumor effectiveness of electrochemotherapy: a systematic review and meta-analysis. Eur J Surg Oncol (EJSO). 2013;39:4–16.

    Article  CAS  Google Scholar 

  75. Queirolo P, Marincola F, Spagnolo F. Electrochemotherapy for the management of melanoma skin metastasis: a review of the literature and possible combinations with immunotherapy. Arch Dermatol Res. 2014;306:521–6.

    Article  CAS  PubMed  Google Scholar 

  76. Miklavčič D, Mali B, Kos B, Heller R, Serša G. Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online. 2014;13:29.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3:115–24.

    Article  CAS  PubMed  Google Scholar 

  78. Blagus T, Markelc B, Cemazar M, Kosjek T, Preat V, Miklavcic D, et al. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery. J Control Release. 2013;172:862–71.

    Article  CAS  PubMed  Google Scholar 

  79. Sersa G, Cemazar M, Parkins CS, Chaplin DJ. Tumour blood flow changes induced by application of electric pulses. Eur J Cancer. 1999;35:672–7.

    Article  CAS  PubMed  Google Scholar 

  80. Sersa G, Jarm T, Kotnik T, Coer A, Podkrajsek M, Sentjurc M, et al. Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br J Cancer. 2008;98:388–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rubinsky B, Edd J, Horowitz L. Electroporation to interrupt blood flow. USA Patent 12/163727. 2004.

    Google Scholar 

  82. Palanker D, Vankov A, Freyvert Y, Huie P. Pulsed electrical stimulation for control of vasculature: temporary vasoconstriction and permanent thrombosis. Bioelectromagnetics. 2008;29:100–7.

    Article  PubMed  Google Scholar 

  83. Mir LM. Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry. 2001;53:1–10.

    Article  CAS  PubMed  Google Scholar 

  84. Frandsen SK, Gissel H, Hojman P, Tramm T, Eriksen J, Gehl J. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis. Cancer Res. 2012;72:1336–41.

    Article  CAS  PubMed  Google Scholar 

  85. Frandsen SK, Gissel H, Hojman P, Eriksen J, Gehl J. Calcium electroporation in three cell lines: a comparison of bleomycin and calcium, calcium compounds, and pulsing conditions. Biochim Biophys Acta (BBA) Gen Subj. 2014;1840:1204–8.

    Article  CAS  Google Scholar 

  86. Hansen EL, Sozer EB, Romeo S, Frandsen SK, Vernier PT, Gehl J. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength. PLoS One. 2015;10:e0122973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Neumann E, Sowers AE, Jordan CA, editors. Electroporation and electrofusion in cell biology. New York: Plenum Press; 1989. p.^pp. Pages

    Google Scholar 

  88. Kanduser M, Usaj M. Cell electrofusion: past and future perspectives for antibody production and cancer cell vaccines. Expert Opin Drug Deliv. 2014;11:1885–98.

    Article  CAS  PubMed  Google Scholar 

  89. Nickoloff JA, editor. Electroporation protocols for microorganisms. Totowa: Humana Press; 1995. p.^pp. Pages

    Google Scholar 

  90. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol. 2008;26:5896–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tamura T, Sakata T. Application of in vivo electroporation to cancer gene therapy. Curr Gene Ther. 2003;3:59–64.

    Article  CAS  PubMed  Google Scholar 

  92. Jaroszeski MJ, Gilbert R, Nicolau C, Heller R. Delivery of genes in vivo using pulsed electric fields. Methods Mol Med. 2000;37:173–86.

    CAS  PubMed  Google Scholar 

  93. Mir LM, Moller PH, André F, Gehl J. Electric pulse-mediated gene delivery to various animal tissues. Adv Genet. 2005;54:83–114.

    CAS  PubMed  Google Scholar 

  94. Andre F, Mir L. DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther. 2004;11:S33–42.

    Article  CAS  PubMed  Google Scholar 

  95. Christie RV, Binger CA. An experimental study of Diathermy IV. Evidence for the penetration of high frequency currents through the living body. J Exp Med. 1927;46:715–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Weinberg ED, Ward GE. Diathermy and regeneration of bone. Arch Surg. 1934;28:1121–9.

    Article  Google Scholar 

  97. Fricke H. A mathematical treatment of the electric conductivity and capacity of disperse systems. II. The capacity of a suspension of conducting spheroids surrounded by a non-conducting membrane for a current of low frequency. Phys Rev. 1925;26:678–81.

    Article  Google Scholar 

  98. Crowley JM. Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. Biophys J. 1973;13:711–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hofmann F, Ohnimus H, Scheller C, Strupp W, Zimmermann U, Jassoy C. Electric field pulses can induce apoptosis. J Membr Biol. 1999;169:103–9.

    Article  CAS  PubMed  Google Scholar 

  100. Miklavcic D, Semrov D, Mekid H, Mir LM. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim Biophys Acta. 2000;1523:73–83.

    Article  CAS  PubMed  Google Scholar 

  101. Edd J, Horowitz L, Davalos RV, Mir LM, Rubinsky B. In-vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng. 2006;53:1409–15.

    Article  PubMed  Google Scholar 

  102. Maor E, Ivorra A, Leor J, Rubinsky B. The effect of irreversible electroporation on blood vessels. Technol Cancer Res Treat. 2007;6:307–12.

    Article  PubMed  Google Scholar 

  103. Maor E, Ivorra A, Leor J, Rubinsky B. Irreversible electroporation attenuates neointimal formation after angioplasty. IEEE Trans Biomed Eng. 2008;55:2268–74.

    Article  PubMed  Google Scholar 

  104. Onik G, Rubinsky B, Mikus P. Irreversible electroporation: implications for prostate ablation. Technol Cancer Res Treat. 2007;6:295–300.

    Article  PubMed  Google Scholar 

  105. Gonzalez CA, Rojas R, Villanueva C, Rubinsky B. Inductive phase shift spectroscopy for volumetric brain edema detection: an experimental simulation. 2007 Ann Int Conf IEEE Eng Med Biol Soc. 2007;1–16:2346–9.

    Article  Google Scholar 

  106. Lee EW, Thai S, Kee ST. Irreversible electroporation: a novel image-guided cancer therapy. Gut Liver. 2010;4(Suppl 1):S99–s104.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lee EW, Chen C, Prieto VE, Dry SM, Loh CT, Kee ST. Advanced hepatic ablation technique for creating complete cell death: irreversible electroporation. Radiology. 2010;255:426–33.

    Article  PubMed  Google Scholar 

  108. Garcia PA, Pancotto T, Rossmeisl JH, Henao-Guerrero N, Gustafson NR, Daniel GB, et al. Non-thermal irreversible electroporation (N-TIRE) and adjuvant fractionated radiotherapeutic multimodal therapy for intracranial malignant glioma in a canine patient. Technol Cancer Res Treat. 2011;10:73–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Neal RE 2nd, Rossmeisl JH Jr, Garcia PA, Lanz OI, Henao-Guerrero N, Davalos RV. Successful treatment of a large soft tissue sarcoma with irreversible electroporation. J Clin Oncol. 2011;29:e372–7.

    Article  PubMed  Google Scholar 

  110. Cannon R, Ellis S, Hayes D, Narayanan G, Martin RC 2nd. Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. J Surg Oncol. 2013;107:544–9.

    Article  PubMed  Google Scholar 

  111. Narayanan G, Hosein PJ, Arora G, Barbery KJ, Froud T, Livingstone AS, et al. Percutaneous irreversible electroporation for downstaging and control of unresectable pancreatic adenocarcinoma. J Vasc Interv Radiol. 2012;23:1613–21.

    Article  PubMed  Google Scholar 

  112. Martin RC 2nd, McFarland K, Ellis S, Velanovich V. Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma. J Am Coll Surg. 2012;215:361–9.

    Article  PubMed  Google Scholar 

  113. Martin RC, Philips P, Ellis S, Hayes D, Bagla S. Irreversible electroporation of unresectable soft tissue tumors with vascular invasion: effective palliation. BMC Cancer. 2014;14:1–9.

    Article  CAS  Google Scholar 

  114. Martin RC 2nd, McFarland K, Ellis S, Velanovich V. Irreversible electroporation in locally advanced pancreatic cancer: potential improved overall survival. Ann Surg Oncol. 2013;20(Suppl 3):S443–9.

    Article  PubMed  Google Scholar 

  115. Bagla S, Papadouris D. Percutaneous irreversible electroporation of surgically unresectable pancreatic cancer: a case report. J Vasc Intervent Radiol JVIR. 2012;23:142–5.

    Article  Google Scholar 

  116. Scheffer HJ, Melenhorst MCAM, Vogel JA, van Tilborg AAJM, Nielsen K, Kazemier G, et al. Percutaneous irreversible electroporation of locally advanced pancreatic carcinoma using the dorsal approach: a case report. Cardiovasc Intervent Radiol. 2014;38:760–5.

    Article  PubMed  Google Scholar 

  117. Pech M, Janitzky A, Wendler JJ, Strang C, Blaschke S, Dudeck O, et al. Irreversible electroporation of renal cell carcinoma: a first-in-man phase I clinical study. Cardiovasc Intervent Radiol. 2011;34:132–8.

    Article  PubMed  Google Scholar 

  118. Trimmer CK, Khosla A, Morgan M, Stephenson SL, Ozayar A, Cadeddu JA. Minimally invasive percutaneous treatment of small renal tumors with irreversible electroporation: a single-center experience. J Vasc Interv Radiol. 2015;26:1465–71.

    Article  PubMed  Google Scholar 

  119. Narayanan G, Doshi MH. Irreversible Electroporation (IRE) in renal tumors. Curr Urol Rep. 2016;17:1–7.

    Article  Google Scholar 

  120. Wendler JJ, Porsch M, Nitschke S, Kollermann J, Siedentopf S, Pech M, et al. A prospective phase 2a pilot study investigating focal percutaneous irreversible electroporation (IRE) ablation by NanoKnife in patients with localised renal cell carcinoma (RCC) with delayed interval tumour resection (IRENE trial). Contemp Clin Trials. 2015;43:10–9.

    Article  CAS  PubMed  Google Scholar 

  121. Wagstaff PG, de Bruin DM, Zondervan PJ, Savci Heijink CD, Engelbrecht MR, van Delden OM, et al. The efficacy and safety of irreversible electroporation for the ablation of renal masses: a prospective, human, in-vivo study protocol. BMC Cancer. 2015;15:165.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wendler JJ, Ricke J, Pech M, Fischbach F, Jürgens J, Siedentopf S, et al. First delayed resection findings after Irreversible Electroporation (IRE) of human localised renal cell carcinoma (RCC) in the IRENE pilot phase 2a trial. Cardiovasc Intervent Radiol. 2015;39:239–50.

    Article  PubMed  Google Scholar 

  123. Deipolyi AR, Golberg A, Yarmush ML, Arellano RS, Oklu R. Irreversible electroporation: evolution of a laboratory technique in interventional oncology. Diagn Interv Radiol. 2014;20:147–54.

    PubMed  PubMed Central  Google Scholar 

  124. Bunte MC, Infante de Oliveira E, Shishehbor MH. Endovascular treatment of resistant and uncontrolled hypertension: therapies on the horizon. JACC Cardiovasc Interv. 2013;6:1–9.

    Article  PubMed  Google Scholar 

  125. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 373:1275–81.

    Google Scholar 

  126. Maor E, Ivorra A, Rubinsky B. Non thermal irreversible electroporation: novel technology for vascular smooth muscle cells ablation. PLoS One. 2009;4:e4757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Maor E, Ivorra A, Mitchell JJ, Rubinsky B. Vascular smooth muscle cells ablation with endovascular nonthermal irreversible electroporation. J Vasc Interv Radiol. 2010;21:1708–15.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Baah-Dwomoh A, Rolong A, Gatenholm P, Davalos R. The feasibility of using irreversible electroporation to introduce pores in bacterial cellulose scaffolds for tissue engineering. Appl Microbiol Biotechnol. 2015;99:4785–4794., pp. 1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sano M, Neal R, Garcia P, Gerber D, Robertson J, Davalos R. Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed Eng Online. 2010;9:83.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Golberg A, Broelsch GF, Bohr S, Mihm MC, Austen WG, Albadawi H, et al. Non-thermal, pulsed electric field cell ablation: a novel tool for regenerative medicine and scarless skin regeneration. Technology. 2013;1:1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Golberg A, Khan S, Belov V, Quinn KP, Albadawi H, Felix Broelsch G, et al. Skin rejuvenation with non-invasive pulsed electric fields. Sci Rep. 2015;5:10187., 05/12/online.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Golberg A, Bruinsma BG, Jaramillo M, Yarmush ML, Uygun BE. Rat liver regeneration following ablation with irreversible electroporation. Peer J. 2016;4:e1571.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Golberg A, Broelsch GF, Vecchio D, Khan S, Hamblin MR, Austen WG Jr, et al. Eradication of multidrug-resistant A. baumannii in burn wounds by antiseptic pulsed electric field. Technology. 2014;2:153–60.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael V. Davalos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Rolong, A., Davalos, R.V., Rubinsky, B. (2018). History of Electroporation. In: Meijerink, M., Scheffer, H., Narayanan, G. (eds) Irreversible Electroporation in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-55113-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55113-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55112-8

  • Online ISBN: 978-3-319-55113-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics