Skip to main content

Multi-bit Leveled Homomorphic Encryption via \(\mathsf {Dual.LWE}\)-Based

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10143))

Abstract

Fully Homomorphic Encryption (\(\mathsf {FHE}\)) is a cryptographic primitive that allows computing over encrypted data without decrypting the corresponding ciphertexts. In general, existing \(\mathsf {FHE}\) schemes can be achieved using standard Learning with Errors (\(\mathsf {LWE}\)) assumption and most of the schemes are single-bit encryption. Hence, the construction of multi-bit \(\mathsf {FHE}\) with high efficiency remains an open problem in cryptography. In this paper, we propose multi-bit versions of Public Key Encryption (\(\mathsf {PKE}\)) via the dual \(\mathsf {LWE}\)-based firstly proposed by Gentry, Peikert, and Vaikuntanathan at STOC 2008. We initially develop an universal construction derived from a general structure of the underlying combined public matrix for constructing the multi-bit version which increases the size of ciphertexts linearly. Then, utilizing multi-bit \(\mathsf {PKE}\) scheme as building block, we propose a new multi-bit \(\mathsf {FHE}\) scheme under the assumption of decisional \(\mathsf {LWE}\) is hard and prove the scheme is \(\textsc {IND-CPA}\)-secure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It is worth mentioning that \(\mathsf {LWE}\) is a generalization of “learning parities with noise” (LPN) which is the special case where \(q = 2\) and \(\chi \) is a Bernoulli distribution over \(\{0, 1\}\).

  2. 2.

    If we choose \(\mathsf {Dual.LWE}\)-based with binary secret, i.e. \(\mathbf {e}\leftarrow \{0,1\}^{m}\), implying \(||\mathbf {error}||\le \sqrt{m\cdot N}\cdot B_{\chi ^{m}}\).

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_28

    Chapter  Google Scholar 

  2. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2_17

    Chapter  Google Scholar 

  3. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_50

    Chapter  Google Scholar 

  4. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 1–13. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7_1

    Chapter  Google Scholar 

  5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 309–325. ACM (2012)

    Google Scholar 

  6. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 575–584. ACM (2013)

    Google Scholar 

  7. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 97–106. IEEE (2011)

    Google Scholar 

  8. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  9. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.: Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_20

    Chapter  Google Scholar 

  10. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7_31

    Chapter  Google Scholar 

  11. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_24

    Google Scholar 

  12. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. STOC 9, 169–178 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM (2008)

    Google Scholar 

  14. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  15. Hiromasa, R., Abe, M., Okamoto, T.: Packing messages and optimizing bootstrapping in GSW-FHE. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 699–715. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2_31

    Google Scholar 

  16. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 12–24. ACM (1989)

    Google Scholar 

  17. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca Raton (2014)

    Google Scholar 

  18. Katz, J., Thiruvengadam, A., Zhou, H.-S.: Feasibility and infeasibility of adaptively secure fully homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 14–31. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7_2

    Chapter  Google Scholar 

  19. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19074-2_21

    Chapter  Google Scholar 

  20. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 1219–1234. ACM (2012)

    Google Scholar 

  21. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  22. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  23. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5_26

    Chapter  Google Scholar 

  24. Nuida, K., Kurosawa, K.: (Batch) Fully homomorphic encryption over integers for non-binary message spaces. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 537–555. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_21

    Google Scholar 

  25. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 333–342. ACM (2009)

    Google Scholar 

  26. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5_31

    Chapter  Google Scholar 

  27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 84–93. ACM (2005)

    Google Scholar 

  28. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)

    Google Scholar 

  29. Smart, N.P., Vercauteren, F.: Fully homomorphic simd operations. Designs Codes Cryptography 71(1), 57–81 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank all anonymous reviewers for their helpful advice and comments. This work was supported by the National Natural Science Foundation of China (Grant No. 61472097), Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20132304110017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunguang Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, Z., Ma, C., Morais, E., Du, G. (2017). Multi-bit Leveled Homomorphic Encryption via \(\mathsf {Dual.LWE}\)-Based. In: Chen, K., Lin, D., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2016. Lecture Notes in Computer Science(), vol 10143. Springer, Cham. https://doi.org/10.1007/978-3-319-54705-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54705-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54704-6

  • Online ISBN: 978-3-319-54705-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics