Skip to main content

Gas Hydrates as an Unconventional Hydrocarbon Resource

  • Living reference work entry
  • First Online:

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Methane hydrates are formed in high-pressure and low-temperature environments such as the ocean floor and high-latitude permafrost deposits. At the molecular level, these icelike solids consist of water cages that contain methane molecules which are usually produced by the microbial decay of organic matter. The abundance of methane hydrates in sediments is controlled by temperature and pressure conditions, the rate of in situ microbial methane production, and the upward migration of dissolved and gaseous methane. The global inventory of methane-carbon in gas hydrates may be about 1000 Gt and exceeds the amount of methane in conventional gas reservoirs by about one order of magnitude. Successful field trials using different production techniques such as thermal stimulation, depressurization, and chemical stimulation have shown that production of natural gas from methane hydrates is technically feasible. The results so far show that high gas production rates can be achieved when methane hydrates are dissociated in the subsurface by reduction of the reservoir pressure.

This is a preview of subscription content, log in via an institution.

References

  • Archer D, Buffett B, Brovkin V (2008) Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc Natl Acad Sci 106:20596–20601

    Article  Google Scholar 

  • Berner RA (1980) Early Diagenesis – a theoretical approach. Princeton University Press, Princeton

    Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  Google Scholar 

  • Boswell R Collett TS, Frye M, Shedd W, McConnell DR, Shelander D (2012) Subsurface gas hydrates in the northern Gulf of Mexico. Mar Pet Geol 34:4–30

    Article  Google Scholar 

  • Boswell R, Schoderbek D, Collett TS, Ohtsuki S, White M, Anderson BJ (2017) The Iġnik Sikumi field experiment, Alaska North Slope: design, operations, and implications for CO2−CH4 exchange in gas hydrate reservoirs. Energy Fuels 31:140–153

    Article  CAS  Google Scholar 

  • Buffett B, Archer D (2004) Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth Planet Sci Lett 227:185–199

    Article  CAS  Google Scholar 

  • Burdige DA (2007) Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev 107:467–485

    Article  CAS  Google Scholar 

  • Burwicz EB, Rüpke LH, Wallmann K (2011) Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation. Geochim Cosmochim Acta 75:4562–4576

    Article  CAS  Google Scholar 

  • Burwicz E, Reichel T, Wallmann K, Rottke W, Haeckel M, Hensen C (2017) 3-D basin-scale reconstruction of natural gas hydrate system of the green canyon, Gulf of Mexico. Geochem Geophys Geosyst 18:1959

    Article  CAS  Google Scholar 

  • Chatterjee S, Bhatnagar G, Dugan B, Dickens GR, Chapman WG, Hirasaki GJ (2014) The impact of lithologic heterogeneity and focused fluid flow upon gas hydrate distribution in marine sediments. J Geophys Res Solid Earth 119:6705–6732

    Article  CAS  Google Scholar 

  • Cherskiy NV, Tsarev VP, Nikitin SP (1985) Investigations and predictions of conditions of accumulation of gas resources in gas-hydrate pools. Pet Geol 21:65–89

    Google Scholar 

  • Collett T, Bahk J-J, Baker R, Boswell R, Divins D, Frye M, Goldberg D, Husebø J, Koh C, Malone M, Morell M, Myers G, Shipp C, Torres M (2015) Methane hydrates in nature-current knowledge and challenges. J Chem Eng Data 60:319–329

    Article  CAS  Google Scholar 

  • Dallimore SR, Uchida T, Collett TS (1999) Scientific results from JAPAX/JNOC/GSC Mallik 2 L-38 gas hydrate research well, Mackenzie Delta, Northwest Territories, Canada. Geol Surv Can Bull 544:295–311

    Google Scholar 

  • Duan Z, Møller N, Greenberg J, Weare JH (1992) The prediction of methane solubility in natural waters to high ionic strength from 0 to 250°C and from 0 to 1600 bar. Geochim Cosmochim Acta 56:1451–1460

    Article  CAS  Google Scholar 

  • Flögel S, Wallmann K, Poulsen CJ, Zhou J, Oschlies A, Voigt S, Kuhnt W (2011) Simulating the biogeochemical effects of volcanic CO2 degassing on the oxygen-state of the deep ocean during the Cenomanian/Turonian anoxic event (OAE2). Earth Planet Sci Lett 305:371–384

    Article  Google Scholar 

  • Garg SK, Pritchett JW, Katoh A, Baba K, Fujii T (2008) A mathematical model for the formation and dissociation of methane hydrates in the marine environment. J Geophys Res Solid Earth 113:32

    Article  Google Scholar 

  • Hancock SH, Collett TS, Dallimore SR, Satoh T, Inoue T, Huenges E, Henninges J, Weatherill B (2005) Overview of thermal-stimulation production-test results for the JAPEX/JNOC/GSC Mallik 5L-38 gas hydrate production research well. In: Dallimore SR, Collett TS (eds) Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada. GSC Bulletin, vol 585. Geological Survey of Canada.

    Google Scholar 

  • Jørgensen BB, D’Hondt S (2006) A starving majority deep beneath the seafloor. Science 314:932–934

    Article  Google Scholar 

  • Konno Y, Fujii T, Sato A, Akamine K, Naiki M, Masuda Y, Yamamoto K, Nagao J (2017) Key findings of the world’s first offshore methane hydrate production test off the coast of Japan: toward future commercial production. Energy Fuels 31:2607–2616

    Article  CAS  Google Scholar 

  • Kvenvolden KA, Lorenson TD (2001) The global occurrence of natural gas hydrate. Geophys Monogr 124:87–98

    Google Scholar 

  • Liu XL, Flemings PB (2007) Dynamic multiphase flow model of hydrate formation in marine sediments. J Geophys Res Solid Earth 112:23

    Google Scholar 

  • Liu X, Flemings PB (2011) Capillary effects on hydrate stability in marine sediments. J Geophs Res 116:B07102

    Google Scholar 

  • Liu CL, Meng QG, He XL, Li CF, Ye YG, Lu ZQ, Zhu YH, Li YH, Liang JQ (2015) Comparison of the characteristics for natural gas hydrate recovered from marine and terrestrial areas in China. J Geochem Explor 152:67–74

    Article  CAS  Google Scholar 

  • Lu Z, Zhu Y, Zhang Y, Wen H, Li Y, Liu C (2011) Gas hydrate occurrences in Qilian Mountain permafrost, Qinghai Province. China. Cold Reg Sci Technol 66:93–104

    Article  Google Scholar 

  • Makogon YF (2010) Natural gas hydrates – a promising source of energy. J Nat Gas Sci Eng 2:49–59

    Article  CAS  Google Scholar 

  • Marquardt M, Hensen C, Pinero E, Wallmann K, Haeckel M (2010) A transfer function for the prediction of gas hydrate inventories in marine sediments. Biogeosciences 7:2925–2941

    Article  CAS  Google Scholar 

  • Milkov AV (2003) Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Sci Rev 66:183–197

    Article  Google Scholar 

  • Milkov AV (2005) Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basicinterpretations in the context of geological settings. Org Geochem 36:681–702

    Article  CAS  Google Scholar 

  • Moridis GJ, Reagan MT (2011) Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost: 1. Concepts, system description, and the production base case. J Petrol Sci Eng 76:194–204

    Article  CAS  Google Scholar 

  • Moridis GJ, Collett TS, Boswell R, Kiruhara M, Reagan MT, Koh C, Sloan ED (2009) Towards production from gas hydrates, current status, assessment of resources, and simulation based evaluation of technology and potential. SPE Reserv Eval Eng 745–771

    Google Scholar 

  • Moridis GJ, Reagan MT, Boyle KL, Zhang K (2011) Evaluation of the gas production potential of some particularly challenging types of oceanic hydrate deposits. Transp Porous Med 90:269–299

    Article  CAS  Google Scholar 

  • Nauhaus K, Boetius A, Krüger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4:296–305

    Article  CAS  Google Scholar 

  • Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafoor sediments: a review. Hydrogeol J 8:11–28

    Article  Google Scholar 

  • Piñero E, Marquardt M, Hensen C, Haeckel M, Wallmann K (2013) Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences 10:959–975

    Article  Google Scholar 

  • Piñero E, Hensen C, Haeckel M, Rottke W, Fuchs T, Wallmann K (2016) 3-D numerical modelling of methane hydrate accumulations using PetroMod. Mar Pet Geol 71:288–295

    Article  Google Scholar 

  • Schicks J, Spangenberg E, Giese R, Steinhauer B, Klump J, Luzi M (2011) New approaches for the production of hydrocarbons from hydrate bearing sediments. Energies 4(1):151–172

    Article  CAS  Google Scholar 

  • Schicks J, Spangenberg E, Giese R, Luzi-Helbing, M, Priegnitz M, Beeskow-Strauch B (2013) A counter-current heat-exchange reactor for the thermal stimulation of hydrate-bearing sediments. Energies 6(6):3002–3016

    Article  CAS  Google Scholar 

  • Sloan ED Jr (1998) Clathrate hydrates of natural gases, 2nd edn. Marcel Dekker, Inc., New York

    Google Scholar 

  • Sloan ED Jr, Koh CA (2008) Clathrate hydrates of natural gases., 3rd edn. CRC Press Tayler and Francis Group, Boca Raton

    Google Scholar 

  • Spangenberg E, Priegnitz M, Heeschen K, Schicks JM (2015) Are laboratory-formed hydrate-bearing systems analogous to those in nature? J Chem Eng Data 60(2):258–268

    Article  CAS  Google Scholar 

  • Suess E, Torres ME, Bohrmann G, Collier RW, Rickert D, Goldfinger C, Linke P, Heuser A, Sahling H, Heeschen K, Jung C, Nakamura K, Greinert J, Pfannkuche O, Trehu A, Klinkhammer G, Whiticar MJ, Eisenhauer A, Teichert B, Elvert M (2001) Sea floor methane hydrates at hydrate ridge, cascadia margin. In Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection. Washington: American Geophysical Union

    Google Scholar 

  • Tishchenko P, Hensen C, Wallmann K, Wong CS (2005) Calculation of the stability and solubility of methane hydrate in seawater. Chem Geol 219:37–52

    Article  CAS  Google Scholar 

  • Waite WF, Santamarina JC, Cortes DD, Dugan B, Espinoza DN, Germaine J, Jang J, Jung JW, Kneafsey TJ, Shin H, Soga K, Winters WJ, Yun T-S (2009) Physical properties of hydrate-bearing sediments. Rev Geophys 47:1–38

    Article  Google Scholar 

  • Wallmann K, Aloisi G, Haeckel M, Obzhirov A, Pavlova G, Tishchenko P (2006) Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments. Geochim Cosmochim Acta 70:3905–3927

    Article  CAS  Google Scholar 

  • Wallmann K, Pinero E, Burwicz E, Haeckel M, Hensen C, Dale A, Ruepke L (2012) The global inventory of methane hydrate in marine sediments: a theoretical approach. Energies 5:2449–2498

    Article  CAS  Google Scholar 

  • Whiticar MJ, Faber E, Schoell M (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation – isotope evidence. Geochim Cosmochim Acta 50:693–709

    Article  CAS  Google Scholar 

  • Yasuda M, Dallimore SR (2007) Summary of the methane hydrate second Mallik production test. J Jpn Assoc Pet Technol 72(6):603–607

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith M. Schicks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wallmann, K., Schicks, J.M. (2018). Gas Hydrates as an Unconventional Hydrocarbon Resource. In: Wilkes, H. (eds) Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-54529-5_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54529-5_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54529-5

  • Online ISBN: 978-3-319-54529-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics