Skip to main content

Available Computational Techniques to Model Atherosclerotic Plaque Progression Implementing a Multi-Level Approach

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

The mechanisms of atherosclerosis remain unclear and computational modeling has been used to provide insights for the understanding of the processes which lead to the initiation of plaque and its progress. In this work we review the available methodologies for vascular image processing and cardiovascular mechanics. Moreover, we present a multi-level modeling approach which can be used: (i) for the prediction of regions which are prone to plaque formation, (ii) for the medical decision support providing computational estimation of the fractional flow reserve (FFR), and (iii) for simulating the deformation of stent in coronary arteries. More specifically, in the first level three-dimensional (3D) arterial reconstruction is performed. In the second level, the 3D arteries are used for modeling of blood flow and computation of endothelial shear stress (ESS). In the third level the accumulation of lipoproteins and monocytes into the arterial wall is simulated, while in the fourth level the plaque growth process is modeled considering the lipoprotein oxidation, the macrophages differentiation, and the foam cells formation. Moreover, in the fifth level FFR is calculated implementing a novel methodology, while in the sixth level the stent deformation in stenosed arteries is modeled. Each modeling level has been validated using human data and the results show that computational modeling might assist in understanding the pathophysiology of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473(7347):317–325

    Article  Google Scholar 

  2. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling – molecular, cellular, and vascular behavior. J Am Coll Cardiol 49(25):2379–2393

    Article  Google Scholar 

  3. Chien S (2003) Molecular and mechanical bases of focal lipid accumulation in arterial wall. Prog Biophys Mol Biol 83(2):131–151

    Article  Google Scholar 

  4. Surdell D, Shaibani A, Bendok B, Eskandari MK (2007) Fracture of a nitinol carotid artery stent that caused restenosis. J Vasc Interv Radiol 18(10):1297–1299

    Article  Google Scholar 

  5. Bourantas CV, Kalatzis FG, Papafaklis MI, Fotiadis DI, Tweddel AC, Kourtis IC, Katsouras CS, Michalis LK (2008) ANGIOCARE: an automated system for fast three-dimensional coronary reconstruction by integrating angiographic and intracoronary ultrasound data. Catheter Cardiovasc Interv 72(2):166–175

    Article  Google Scholar 

  6. Auer M, Stollberger R, Regitnig P, Ebner F, Holzapfel GA (2006) 3-D reconstruction of tissue components for atherosclerotic human arteries using ex vivo high-resolution MRI. IEEE Trans Med Imaging 25(3):345–357

    Article  Google Scholar 

  7. Adame IM, van der Geest RJ, Wasserman BA, Mohamed MA, Reiber JH, Lelieveldt BP (2004) Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images. MAGMA 16(5):227–234

    Article  Google Scholar 

  8. Hofman JM, Branderhorst WJ, ten Eikelder HM, Cappendijk VC, Heeneman S, Kooi ME, Hilbers PA, ter Haar Romeny BM (2006) Quantification of atherosclerotic plaque components using in vivo MRI and supervised classifiers. Magn Reson Med 55(4):790–799

    Article  Google Scholar 

  9. Liu F, Xu D, Ferguson MS, Chu B, Saam T, Takaya N, Hatsukami TS, Yuan C, Kerwin WS (2006) Automated in vivo segmentation of carotid plaque MRI with morphology-enhanced probability maps. Magn Reson Med 55(3):659–668

    Article  Google Scholar 

  10. Sakellarios AI, Stefanou K, Siogkas P, Tsakanikas VD, Bourantas CV, Athanasiou L, Exarchos TP, Fotiou E, Naka KK, Papafaklis MI, Patterson AJ, Young VE, Gillard JH, Michalis LK, Fotiadis DI (2012) Novel methodology for 3D reconstruction of carotid arteries and plaque characterization based upon magnetic resonance imaging carotid angiography data. Magn Reson Imaging 30(8):1068–1082

    Article  Google Scholar 

  11. Papadopoulou S-L, Neefjes LA, Schaap M, Li H-L, Capuano E, van der Giessen AG, Schuurbiers JCH, Gijsen FJH, Dharampal AS, Nieman K, van Geuns RJ, Mollet NR, de Feyter PJ (2011) Detection and quantification of coronary atherosclerotic plaque by 64-slice multidetector CT: a systematic head-to-head comparison with intravascular ultrasound. Atherosclerosis 219(1):163–170

    Article  Google Scholar 

  12. Divakaran S, Cheezum M, Hulten E, Bittencourt M, Silverman M, Nasir K, Blankstein R (2015) Use of cardiac CT and calcium scoring for detecting coronary plaque: implications on prognosis and patient management. Br J Radiol 88(1046):20140594

    Article  Google Scholar 

  13. Saremi F, Achenbach S (2015) Coronary plaque characterization using CT. Am J Roentgenol 204(3):W249–W260

    Article  Google Scholar 

  14. Voros S, Rinehart S, Qian Z, Vazquez G, Anderson H, Murrieta L, Wilmer C, Carlson H, Taylor K, Ballard W (2011) Prospective validation of standardized, 3-dimensional, quantitative coronary computed tomographic plaque measurements using radiofrequency backscatter intravascular ultrasound as reference standard in intermediate coronary arterial lesions: results from the ATLANTA (assessment of tissue characteristics, lesion morphology, and hemodynamics by angiography with fractional flow reserve, intravascular ultrasound and virtual histology, and noninvasive computed tomography in atherosclerotic plaques) I study. J Am Coll Cardiol Intv 4(2):198–208

    Article  Google Scholar 

  15. de Graaf MA, Broersen A, Kitslaar PH, Roos CJ, Dijkstra J, Lelieveldt BP, Jukema JW, Schalij MJ, Delgado V, Bax JJ (2013) Automatic quantification and characterization of coronary atherosclerosis with computed tomography coronary angiography: cross-correlation with intravascular ultrasound virtual histology. Int J Card Imaging 29(5):1177–1190

    Article  Google Scholar 

  16. Arbab-Zadeh A, Hoe J (2011) Quantification of coronary arterial stenoses by multidetector CT angiography in comparison with conventional angiography methods, caveats, and implications. J Am Coll Cardiol Img 4(2):191–202

    Article  Google Scholar 

  17. Athanasiou L, Rigas G, Sakellarios AI, Exarchos TP, Siogkas PK, Bourantas CV, Garcia-Garcia HM, Lemos PA, Falcao BA, Michalis LK (2016) Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography–comparison and registration with IVUS. BMC Med Imaging 16(1):1

    Article  Google Scholar 

  18. Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Wells WM, Colchester A, Delp S (eds) Medical image computing and computer-assisted intervention — MICCAI’98: first international conference Cambridge, MA, USA, October 11–13, 1998 proceedings. Springer, Berlin Heidelberg, pp 130–137. doi:10.1007/BFb0056195

    Chapter  Google Scholar 

  19. Metz C, Schaap M, Weustink A, Mollet N, van Walsum T, Niessen W (2009) Coronary centerline extraction from CT coronary angiography images using a minimum cost path approach. Med Phys 36(12):5568–5579

    Article  Google Scholar 

  20. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  21. Taylor CA, Steinman DA (2010) Image-based modeling of blood flow and Vessel Wall dynamics: applications, methods and future directions. Ann Biomed Eng 38(3):1188–1203

    Article  Google Scholar 

  22. Saad Y, Schultz MH (1986) Gmres – a generalized minimal residual algorithm for solving nonsymmetric linear-systems. SIAM J Sci Stat Comput 7(3):856–869

    Article  MathSciNet  MATH  Google Scholar 

  23. Perktold K, Hofer M, Rappitsch G, Loew M, Kuban BD, Friedman MH (1998) Validated computation of physiologic flow in a realistic coronary artery branch. J Biomech 31(3):217–228

    Article  Google Scholar 

  24. Steinman DA, Thomas JB, Ladak HM, Milner JS, Rutt BK, Spence JD (2002) Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn Reson Med 47(1):149–159

    Article  Google Scholar 

  25. Papafaklis MI, Vergallo R, Jia HB, Bourantas C, Yonetsu T, Lakkas L, McNulty I, Kotsia A, Lee H, Antoniadis A, Yu B, Naka KK, Fotiadis DI, Feldman C, Michalis L, Jang IK, Stone P (2013) Longitudinal distribution of endothelial shear stress along culprit lesions and association with plaque characteristics in patients with acute coronary syndromes: a three-dimensional frequency-domain optical coherence tomography study. J Am Coll Cardiol 62(18):B198–B198

    Article  Google Scholar 

  26. Sakellarios AI, Papafaklis MI, Siogkas P, Athanasiou LS, Exarchos TP, Stefanou K, Bourantas CV, Naka KK, Michalis LK, Parodi O, Fotiadis DI (2013) Patient-specific computational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: effect of hemodynamic and biological factors. Am J Physiol Heart C 304(11):H1455–H1470

    Article  Google Scholar 

  27. Bourantas CV, Raber L, Zaugg S, Sakellarios A, Taniwaki M, Heg D, Moschovitis A, Radu M, Papafaklis MI, Kalatzis F, Naka KK, Fotiadis DI, Michalis LK, Serruys PW, Garcia Garcia HM, Windecker S (2015) Impact of local endothelial shear stress on neointima and plaque following stent implantation in patients with ST-elevation myocardial infarction: a subgroup-analysis of the COMFORTABLE AMI-IBIS 4 trial. Int J Cardiol 186:178–185

    Article  Google Scholar 

  28. Bourantas CV, Papadopoulou SL, Serruys PW, Sakellarios A, Kitslaar PH, Bizopoulos P, Girasis C, Zhang YJ, de Vries T, Boersma E, Papafaklis MI, Naka KK, Fotiadis DI, Stone GW, Reiber JH, Michalis LK, de Feyter PJ, Garcia-Garcia HM (2015) Noninvasive prediction of atherosclerotic progression: the PROSPECT-MSCT study. JACC Cardiovasc Imaging 9(8):1009–1011

    Article  Google Scholar 

  29. Papadopoulou SL, Neefjes LA, Garcia-Garcia HM, Flu WJ, Rossi A, Dharampal AS, Kitslaar PH, Mollet NR, Veldhof S, Nieman K, Stone GW, Serruys PW, Krestin GP, de Feyter PJ (2012) Natural history of coronary atherosclerosis by multislice computed tomography. JACC Cardiovasc Imag 5(3):S28–S37

    Article  Google Scholar 

  30. Murray CD (1926) The physiological principle of minimum work applied to the angle of branching of arteries. J Gen Physiol 9(6):835–841

    Article  Google Scholar 

  31. Prosi M, Zunino P, Perktold K, Quarteroni A (2005) Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow. J Biomech 38(4):903–917

    Article  Google Scholar 

  32. Hong J, Wei L, Fu C, Tan W (2008) Blood flow and macromolecular transport in complex blood vessels. Clin Biomech 23(Suppl 1):S125–S129

    Article  Google Scholar 

  33. Sun N, Wood NB, Hughes AD, Thom SA, Xu XY (2006) Fluid-wall modelling of mass transfer in an axisymmetric stenosis: effects of shear-dependent transport properties. Ann Biomed Eng 34(7):1119–1128

    Article  Google Scholar 

  34. Olgac U, Knight J, Poulikakos D, Saur SC, Alkadhi H, Desbiolles LM, Cattin PC, Kurtcuoglu V (2011) Computed high concentrations of low-density lipoprotein correlate with plaque locations in human coronary arteries. J Biomech 44(13):2466–2471

    Article  Google Scholar 

  35. Sun N, Wood NB, Hughes AD, Thom SAM, Xu XY (2006) Fluid-wall modelling of mass transfer in an axisymmetric stenosis: effects of shear-dependent transport properties. Ann Biomed Eng 34(7):1119–1128

    Article  Google Scholar 

  36. Sakellarios AI, Siogkas P, Exarchos T, Stefanou K, Bourantas CV, Athanasiou L, Fotiou E, Papafaklis M, Naka KK, Michalis LK, Fotiadis DI (2011) Modelling LDL accumulation in the case of endothelial dysfunction. J Serbian Soc Comput Mech 5(2):90–100

    Google Scholar 

  37. Kedem O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27(2):229–246

    Article  Google Scholar 

  38. Stangeby DK, Ethier CR (2002) Coupled computational analysis of arterial LDL transport – effects of hypertension. Comput Methods Biomech Biomed Engin 5(3):233–241

    Article  Google Scholar 

  39. Guretzki HJ, Gerbitz KD, Olgemoller B, Schleicher E (1994) Atherogenic levels of low density lipoprotein alter the permeability and composition of the endothelial barrier. Atherosclerosis 107(1):15–24

    Article  Google Scholar 

  40. Sakellarios A, Bourantas CV, Papadopoulou SL, Tsirka Z, de Vries T, Kitslaar PH, Girasis C, Naka KK, Fotiadis DI, Veldhof S, Stone GW, Reiber JH, Michalis LK, Serruys PW, de Feyter PJ, Garcia-Garcia HM (2016) Prediction of atherosclerotic disease progression using LDL transport modelling: a serial computed tomographic coronary angiographic study. Eur Heart J Cardiovasc Imaging 18(1):11–18. doi:10.1093/ehjci/jew035

    Article  Google Scholar 

  41. Sakellarios AI, Bizopoulos P, Papafaklis MI, Athanasiou L, Exarchos T, Bourantas CV, Naka KK, Patterson AJ, Young VE, Gillard JH, Parodi O, Michalis LK, Fotiadis DI (2016) Natural history of carotid atherosclerosis in relation to the hemodynamic environment: a low-density lipoprotein transport modeling study with serial magnetic resonance imaging in humans. Angiology 68(2). doi:10.1177/0003319716644138

  42. Filipovic N, Nikolic D, Saveljic I, Milosevic Z, Exarchos T, Pelosi G, Parodi O (2013) Computer simulation of three-dimensional plaque formation and progression in the coronary artery. Comput Fluids 88:826–833

    Article  Google Scholar 

  43. Siogkas P, Sakellarios A, Exarchos TP, Athanasiou L, Karvounis E, Stefanou K, Fotiou E, Fotiadis DI, Naka KK, Michalis LK, Filipovic N, Parodi O (2011) Multiscale – patient-specific artery and atherogenesis models. IEEE T Biomed Eng 58(12):3464–3468

    Article  Google Scholar 

  44. Cilla M, Pena E, Martinez MA (2014) Mathematical modelling of atheroma plaque formation and development in coronary arteries. J R Soc Interface 11(90):1–16

    Google Scholar 

  45. Kunitake ST, Jarvis MR, Hamilton RL, Kane JP (1992) Binding of transition-metals by apolipoprotein-a-I-containing plasma-lipoproteins-inhibition of oxidation of low-density lipoproteins. In: Proceedings of the National Academy of Sciences of the United States of America, 1992. pp 6993-6997

    Google Scholar 

  46. Sakellarios A, Raeber L, Bourantas C, Exarchos T, Athanasiou L, Pelosi G, Parodi O, Koskinas K, Naka K, Michalis L, Serruys PW, Garcia-Garcia H, Windecker S, Fotiadis D (2016) Prediction of atherosclerotic plaque development in an in vivo coronary arterial segment based on a multi-level modeling approach. IEEE Trans Biomed Eng. doi:10.1109/TBME.2016.2619489

    Google Scholar 

  47. Puccinelli E, Gervasi PG, Trivella MG, Vornoli A, Viglione F, Pelosi G, Parodi O, Sampietro T, Puntoni M (2015) Modulation of lipid homeostasis in response to continuous or intermittent high-fat diet in pigs. Animal 9(6):1000–1007

    Article  Google Scholar 

  48. Sakellarios AI, Bizopoulos P, Stefanou K, Athanasiou LS, Papafaklis MI, Bourantas CV, Naka KK, Michalis LK, Fotiadis DI (2015) A proof-of-concept study for predicting the region of atherosclerotic plaque development based on plaque growth modeling in carotid arteries. Conf Proc IEEE Eng Med Biol Soc 2015:6552–6555

    Google Scholar 

  49. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol 58(19):1989–1997

    Article  Google Scholar 

  50. Kruk M, Wardziak L, Demkow M, Pleban W, Pregowski J, Dzielinska Z, Witulski M, Witkowski A, Ruzyllo W, Kepka C (2016) Workstation-based calculation of CTA-based FFR for intermediate stenosis. JACC Cardiovasc Imaging 9(6):690–699

    Article  Google Scholar 

  51. Papafaklis MI, Muramatsu T, Ishibashi Y, Lakkas LS, Nakatani S, Bourantas CV, Ligthart J, Onuma Y, Echavarria-Pinto M, Tsirka G, Kotsia A, Nikas DN, Mogabgab O, van Geuns RJ, Naka KK, Fotiadis DI, Brilakis ES, Garcia-Garcia HM, Escaned J, Zijlstra F, Michalis LK, Serruys PW (2014) Fast virtual functional assessment of intermediate coronary lesions using routine angiographic data and blood flow simulation in humans: comparison with pressure wire – fractional flow reserve. EuroIntervention 10(5):574–583

    Article  Google Scholar 

  52. Siogkas PK, Anagnostopoulos CD, Exarchos TP, Liga R, Knuuti J, Scholte AJHA, Papafaklis MI, Parodi O, Michalis LK, Neglia D, Fotiadis DI (2016) Computational Hemodynamic Assessment of coronary lesions from Computed Tomography Angiography. A novel approach. In: ESC Congress 2016, Rome, Italy

    Google Scholar 

  53. Siogkas PK, Athanasiou LS, Sakellarios AI, Stefanou KA, Exarchos TP, Papafaklis MI, Naka KK, Parodi O, Michalis LK, Fotiadis DI (2015) Validation study of a 3D-QCA coronary reconstruction method using a hybrid intravascular ultrasound and angiography reconstruction method and patient-specific fractional flow reserve data. Conf Proc IEEE Eng Med Biol Soc 2015:973–976

    Google Scholar 

  54. Azaouzi M, Makradi A, Petit J, Belouettar S, Polit O (2013) On the numerical investigation of cardiovascular balloon-expandable stent using finite element method. Comput Mater Sci 79:326–335

    Article  Google Scholar 

  55. Gervaso F, Capelli C, Petrini L, Lattanzio S, Di Virgilio L, Migliavacca F (2008) On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J Biomech 41(6):1206–1212

    Article  Google Scholar 

  56. Karanasiou GS, Sakellarios AI, Tripoliti EE, Petrakis EGM, Zervakis ME, Migliavacca F, Dubini G, Dordoni E, Michalis LK, Fotiadis DI (2013) Modeling of stent implantation in a human stenotic artery. In: LMR R (ed) XIII mediterranean conference on medical and biological engineering and computing, Seville, Spain, 2013. Springer International Publishing, Cham, pp 1045–1048

    Google Scholar 

  57. Lally C, Reid AJ, Prendergast PJ (2004) Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. Ann Biomed Eng 32(10):1355–1364

    Article  Google Scholar 

  58. Maurel W (1998) Biomechanical models for soft tissue simulation. ESPRIT basic research series, vol 18155. Springer, Berlin, New York

    Book  Google Scholar 

Download references

Acknowledgements

This work is partially funded by the European Commission (Project SMARTOOL, GA number: 689068, H2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios I. Fotiadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sakellarios, A.I. et al. (2017). Available Computational Techniques to Model Atherosclerotic Plaque Progression Implementing a Multi-Level Approach. In: Wittek, A., Joldes, G., Nielsen, P., Doyle, B., Miller, K. (eds) Computational Biomechanics for Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-54481-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54481-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54480-9

  • Online ISBN: 978-3-319-54481-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics