Skip to main content

Stem Cell Technology for (Epi)genetic Brain Disorders

  • Chapter
  • First Online:
Neuroepigenomics in Aging and Disease

Abstract

Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson’s disease (PD), Alzheimer’s disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horvath P, Aulner N, Bickle M, Davies AM, Del Nery E, Ebner D, et al. Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov. 2016;15:751–69.

    Article  CAS  PubMed  Google Scholar 

  2. Fernández-Santiago R, Ezquerra M. Epigenetic research of neurodegenerative disorders using patient iPSC-based models. Stem Cells Int. 2016;2016:1–16.

    Article  Google Scholar 

  3. Takahashi K, Yamanaka S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol. 2016;17:183–93.

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  5. Rubin LL. Stem cells and drug discovery: the beginning of a new era? Cell. 2008;132:549–52.

    Article  CAS  PubMed  Google Scholar 

  6. Han F, Baremberg D, Gao J, Duan J, Lu X, Zhang N, et al. Development of stem cell-based therapy for Parkinson’s disease. Transl Neurodegener. 2015;4:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Yap MS, Nathan KR, Yeo Y, Lim LW, Poh CL, Richards M, et al. Neural differentiation of human pluripotent stem cells for nontherapeutic applications: toxicology, pharmacology, and in vitro disease modeling. Stem Cells Int. 2015;2015:105172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ma L, Liu Y, Zhang SC. Directed differentiation of dopamine neurons from human pluripotent stem cells. Methods Mol Biol. 2011;767:411–8.

    Article  CAS  PubMed  Google Scholar 

  9. Santos DP, Kiskinis E. Generation of spinal motor neurons from human pluripotent stem cells. Synap Dev Methods Protoc. 2017;53–66

    Google Scholar 

  10. Payne NL, Sylvain A, O’Brien C, Herszfeld D, Sun G, Bernard CCA. Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases. New Biotechnol. 2015;32:212–28.

    Article  CAS  Google Scholar 

  11. Wen Z, Christian KM, Song H, Ming G. Modeling psychiatric disorders with patient-derived iPSCs. Curr Opin Neurobiol. 2016;36:118–27.

    Article  CAS  PubMed  Google Scholar 

  12. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28:1057–68.

    Article  CAS  PubMed  Google Scholar 

  13. Badger JL, Cordero-Llana O, Hartfield EM, Wade-Martins R. Parkinson’s disease in a dish - Using stem cells as a molecular tool. Neuropharmacology. 2014;76(Pt A):88–96.

    Article  CAS  PubMed  Google Scholar 

  14. Pu J, Jiang H, Zhang B, Feng J. Redefining Parkinson’s disease research using induced pluripotent stem cells. Curr Neurol Neurosci Rep. 2012;12:392–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sanchez-Mut JV, Heyn H, Vidal E, Moran S, Sayols S, Delgado-Morales R, et al. Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns. Transl Psychiatry. 2016;6:e718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HW, Mastroeni D, et al. The epigenetics of aging and neurodegeneration. Prog Neurobiol. 2015;131:21–64.

    Article  CAS  PubMed  Google Scholar 

  17. Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain. 1999;8:1437–48.

    Article  Google Scholar 

  18. Beitz JM. Parkinson’s disease: a review. Front Biosci (Schol Ed). 2014;6:65–74.

    Article  Google Scholar 

  19. Byers B, Lee HL, Reijo PR. Modeling Parkinson’s disease using induced pluripotent stem cells. Curr Neurol Neurosci Rep. 2012;12:237–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nishimura K, Takahashi J. Therapeutic application of stem cell technology toward the treatment of Parkinson’s disease. Biol Pharm Bull. 2013;36:171–5.

    Article  CAS  PubMed  Google Scholar 

  21. Fu MH, Li CL, Lin HL, Chen PC, Calkins MJ, Chang YF, et al. Stem cell transplantation therapy in Parkinson’s disease. Springerplus. 2015;4:597.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kocabicak E, Tan SK, Temel Y. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: why so successful? Surg Neurol Int. 2012;3:S312–4.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kornblum HI. Introduction to neural stem cells. Stroke. 2007;38:810–6.

    Article  PubMed  Google Scholar 

  24. Nishino H, Hida H, Takei N, Kumazaki M, Nakajima K, Baba H. Mesencephalic neural stem (progenitor) cells develop to dopaminergic neurons more strongly in dopamine-depleted striatum than in intact striatum. Exp Neurol. 2000;164:209–14.

    Article  CAS  PubMed  Google Scholar 

  25. Redmond DE, Bjugstad KB, Teng YD, Ourednik V, Ourednik J, Wakeman DR, et al. Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci U S A. 2007;104:12175–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee CS, Cenci MA, Schulzer M, Björklund A. Embryonic ventral mesencephalic grafts improve levodopa-induced dyskinesia in a rat model of Parkinson’s disease. Brain. 2000;123:1365–79.

    Article  PubMed  Google Scholar 

  27. Kondoh T, Pundt LL, Low WC. Development of human fetal ventral mesencephalic grafts in rats with 6-OHDA lesions of the nigrostriatal pathway. Neurosci Res. 1995;21:223–33.

    Article  CAS  PubMed  Google Scholar 

  28. Redmond Jr DE, Vinuela A, Kordower JH, Isacson O. Influence of cell preparation and target location on the behavioral recovery after striatal transplantation of fetal dopaminergic neurons in a primate model of Parkinson’s disease. Neurobiol Dis. 2008;29:103–16.

    Article  CAS  PubMed  Google Scholar 

  29. Yang H, Wang J, Wang F, Liu X, Chen H, Duan W, et al. Dopaminergic neuronal differentiation from the forebrain-derived human neural stem cells induced in cultures by using a combination of BMP-7 and Pramipexole with growth factors. Front Neural Circuits. 2016;10:1172.

    Article  Google Scholar 

  30. Park CH, Kang JS, Shin YH, Chang MY, Chung S, Koh HC, et al. Acquisition of in vitro and in vivo functionality of Nurr1-induced dopamine neurons. FASEB J. 2006;20:2553–5.

    Article  CAS  PubMed  Google Scholar 

  31. Parish CL, Castelo-Branco G, Rawal N, Tonnesen J, Sorensen AT, Salto C, et al. Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice. J Clin Invest. 2008;118:149–60.

    Article  CAS  PubMed  Google Scholar 

  32. Studer L, Tabar V, McKay RD. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci. 1998;1:290–5.

    Article  CAS  PubMed  Google Scholar 

  33. Hagell P, Schrag A, Piccini P, Jahanshahi M, Brown R, Rehncrona S, et al. Sequential bilateral transplantation in Parkinson’s disease. Brain. 1999;122:1121–32.

    Article  PubMed  Google Scholar 

  34. Levivier M, Dethy S, Rodesch F, Peschanski M, Vandesteene A, David P, et al. Intracerebral transplantation of fetal ventral mesencephalon for patients with advanced Parkinson’s disease. Stereotact Funct Neurosurg. 1998;69:99–111.

    Article  Google Scholar 

  35. Freed CR, Breeze RE, Rosenberg NL, Schneck SA, Kriek E, Qi J, et al. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N Engl J Med. 1992;327:1549–55.

    Article  CAS  PubMed  Google Scholar 

  36. Freeman TB, Olanow CW, Hauser RA, Nauert GM, Smith DA, Borlongan CV, et al. Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Ann Neurol. 1995;38:379–88.

    Article  CAS  PubMed  Google Scholar 

  37. Lindvall O, Sawle G, Widner H, Rothwell JC, Björklund A, Brooks D, et al. Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann Neurol. 1994;35:172–80.

    Article  CAS  PubMed  Google Scholar 

  38. Mendez I, Viñuela A, Astradsson A, Mukhida K, Hallett P, Robertson H, et al. Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat Med. 2008;14:507–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chu Y, Kordower JH. Lewy body pathology in fetal grafts. Ann N Y Acad Sci. 2010;1184:55–67.

    Article  CAS  PubMed  Google Scholar 

  40. Hagell P, Piccini P, Björklund A, Brundin P, Rehncrona S, Widner H, et al. Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci. 2002;5:627–8.

    CAS  PubMed  Google Scholar 

  41. Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol. 2003;54:403–14.

    Article  PubMed  Google Scholar 

  42. Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EGA, Willemze R, Fibbe WE. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood. 2006;108:2114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Turner DA, Kearney W. Scientific and ethical concerns in neural fetal tissue transplantation. Neurosurgery. 1993;33:1031–7.

    CAS  PubMed  Google Scholar 

  44. Kirkeby A, Grealish S, Wolf DA, Nelander J, Wood J, Lundblad M, et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 2012;1:703–14.

    Article  CAS  PubMed  Google Scholar 

  45. Muramatsu S, Okuno T, Suzuki Y, Nakayama T, Kakiuchi T, Takino N, et al. Multitracer assessment of dopamine function after transplantation of embryonic stem cell-derived neural stem cells in a primate model of Parkinson’s disease. Synapse. 2009;63:541–8.

    Article  CAS  PubMed  Google Scholar 

  46. Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 2011;480:547–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, et al. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest. 2005;115:102–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kikuchi T, Morizane A, Doi D, Onoe H, Hayashi T, Kawasaki T, et al. Survival of human induced pluripotent stem cell-derived midbrain dopaminergic neurons in the brain of a primate model of Parkinson’s disease. J Parkinsons Dis. 2011;1:395–412.

    CAS  PubMed  Google Scholar 

  49. Falkner S, Grade S, Dimou L, Conzelmann KK, Bonhoeffer T, Götz M, et al. Transplanted embryonic neurons integrate into adult neocortical circuits. Nature. 2016;539:248–53.

    Article  PubMed  CAS  Google Scholar 

  50. Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell. 2014;15:653–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Arenas E, Denham M, Villaescusa JC. How to make a midbrain dopaminergic neuron. Development. 2015;142:1918–36.

    Article  CAS  PubMed  Google Scholar 

  52. Brederlau A, Correia AS, Anisimov SV, Elmi M, Paul G, Roybon L, et al. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells. 2006;24:1433–40.

    Article  CAS  PubMed  Google Scholar 

  53. Ben-Hur T, Idelson M, Khaner H, Pera M, Reinhartz E, Itzik A, et al. Transplantation of human embryonic stem cell–derived neural progenitors improves behavioral deficit in parkinsonian rats. Stem Cells. 2004;22:1246–55.

    Article  PubMed  Google Scholar 

  54. Blum B, Benvenisty N. The Tumorigenicity of human embryonic stem cell. Adv Cancer Res. 2008;100:133–58.

    Article  PubMed  Google Scholar 

  55. Grinnemo KH, Kumagai-Braesch M, Mânsson-Broberg A, Skottman H, Hao X, Siddiqui A, et al. Human embryonic stem cells are immunogenic in allogeneic and xenogeneic settings. Reprod Biomed Online. 2006;13:712–24.

    Article  CAS  PubMed  Google Scholar 

  56. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17:11–22.

    Article  CAS  PubMed  Google Scholar 

  57. Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol. 2016;17:194–200.

    Article  CAS  PubMed  Google Scholar 

  58. Gonzalez R, Garitaonandia I, Crain A, Poustovoitov M, Abramihina T, Noskov A, et al. Proof of concept studies exploring the safety and functional activity of human parthenogenetic-derived neural stem cells for the treatment of Parkinson’s disease. Cell Transplant. 2015;24:681–90.

    Article  PubMed  Google Scholar 

  59. Fikes BJ. Parkinson’s stem cell therapy OK’d for testing. 2015. http://www.sandiegouniontribune.com/business/biotech/sdut-international-stem-cell-parkinsons-australia-2015dec14-story.html. Accessed 20 Nov 2016.

    Google Scholar 

  60. Hallett PJ, Deleidi M, Astradsson A, Smith GA, Cooper O, Osborn TM, et al. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell. 2015;16:269–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474:212–5.

    Article  CAS  PubMed  Google Scholar 

  62. Han F, Wang W, Chen B, Chen C, Li S, Lu X, et al. Human induced pluripotent stem cell-derived neurons improve motor asymmetry in a 6-hydroxydopamine-induced rat model of Parkinson’s disease. Cytotherapy. 2015;17:665–79.

    Article  CAS  PubMed  Google Scholar 

  63. Sundberg M, Bogetofte H, Lawson T, Jansson J, Smith G, Astradsson A, et al. Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells. 2013;31:1548–62.

    Article  CAS  PubMed  Google Scholar 

  64. Rhee YH, Ko JY, Chang MY, Yi SH, Kim D, Kim CH, et al. Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest. 2011;121:2326–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in parkinsonian rats. Proc Natl Acad Sci U S A. 2010;107:15921–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Emborg ME, Liu Y, Xi J, Zhang X, Yin Y, Lu J, et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep. 2013;3:646–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, et al. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467:285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim DS, Ross PJ, Zaslavsky K, Ellis J. Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD. Front Cell Neurosci. 2014;8:109.

    PubMed  PubMed Central  Google Scholar 

  69. Parker GC, Acsadi G, Brenner CA. Mitochondria: determinants of stem cell fate? Stem Cells Dev. 2009;18:803–6.

    Article  CAS  PubMed  Google Scholar 

  70. Khacho M, Clark A, Svoboda DS, Azzi J, MacLaurin JG, Meghaizel C, et al. Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell. 2016;19:232–47.

    Article  CAS  PubMed  Google Scholar 

  71. Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell. 2011;146:318–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ross CA, Akimov SS. Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Hum Mol Genet. 2014;23:R17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Maeder ML, Gersbach CA. Genome-editing technologies for gene and cell therapy. Mol Ther. 2016;24:430–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang L, Cao J, Wang Y, Lan T, Liu L, Wang W, et al. Immunogenicity and functional evaluation of iPSC-derived organs for transplantation. Cell Discov. 2015;1:15015.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cooper O, Seo H, Andrabi S, Guardia-Laguarta C, Graziotto J, Sundberg M, et al. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med. 2012;4:141ra90–0.

    Google Scholar 

  76. Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell. 2011;8:267–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jiang H, Ren Y, Yuen EY, Zhong P, Ghaedi M, Hu Z, et al. Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nat Commun. 2012;3:668.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA, et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 2011;146:37–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Devine MJ, Ryten M, Vodicka P, Thomson AJ, Burdon T, Houlden H, et al. Parkinson’s disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nat Commun. 2011;2:440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Reinhardt P, Schmid B, Burbulla LF, Schöndorf DC, Wagner L, Glatza M, et al. Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell. 2013;12:354–67.

    Article  CAS  PubMed  Google Scholar 

  81. Woodard CM, Campos BA, Kuo SH, Nirenberg MJ, Nestor MW, Zimmer M, et al. iPSC-derived dopamine neurons reveal differences between monozygotic twins discordant for Parkinson’s disease. Cell Rep. 2014;9:1173–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sánchez-Danés A, Richaud-Patin Y, Carballo-Carbajal I, Jiménez-Delgado S, Caig C, Mora S, et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med. 2012;4:380–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Fernández-Santiago R, Carballo-Carbajal I, Castellano G, Torrent R, Richaud Y, Sánchez-Danés A, et al. Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson’s disease patients. EMBO Mol Med. 2015;7:1529–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, et al. Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet. 2011;20:4530–9.

    Article  CAS  PubMed  Google Scholar 

  85. Wojda U, Kuznicki J. Alzheimer’s disease modeling: ups, downs, and perspectives for human induced pluripotent stem cells. J Alzheimers Dis. 2013;34:563–88.

    CAS  PubMed  Google Scholar 

  86. Bekris LM, Yu CE, Bird TD, Tsuang DW. Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol. 2010;23:213–27.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lam B, Masellis M, Freedman M, Stuss DT, Black SE. Clinical, imaging, and pathological heterogeneity of the Alzheimer’s disease syndrome. Alzheimers Res Ther. 2013;5:1.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1:a006189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Yang J, Li S, He XB, Cheng C, Le W. Induced pluripotent stem cells in Alzheimer’s disease: applications for disease modeling and cell-replacement therapy. Mol Neurodegener. 2016;11:39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Sullivan SE, Young-Pearse TL. Induced pluripotent stem cells as a discovery tool for Alzheimers disease. Brain Res. 2015; doi:10.2016/j.brainres.2015.10.005.

    PubMed  Google Scholar 

  91. Inoue H, Nagata N, Kurokawa H, Yamanaka S. iPS cells: a game changer for future medicine. EMBO J. 2014;33:409–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sproul AA. Being human: the role of pluripotent stem cells in regenerative medicine and humanizing Alzheimer’s disease models. Mol Asp Med. 2015;43–44:54–65.

    Article  Google Scholar 

  93. Mohamet L, Miazga NJ, Ward CM. Familial Alzheimer’s disease modelling using induced pluripotent stem cell technology. World J Stem Cells. 2014;6:239–47.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Weggen S, Beher D. Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant Alzheimer’s disease. Alzheimers Res Ther. 2012;4:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ. A human stem cell model of early Alzheimer’s disease pathology in Down syndrome. Sci Transl Med. 2012;4:124ra9.

    Google Scholar 

  96. Prasher VP. Down syndrome and Alzheimer’s disease: biological correlates: Radcliffe Publishing; 2006.

    Google Scholar 

  97. Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012;482:216–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Cataldo A, Rebeck GW, Ghetri B, Hulette C, Lippa C, Van Broeckhoven C, et al. Endocytic disturbances distinguish among subtypes of Alzheimer’s disease and related disorders. Ann Neurol. 2001;50:661–5.

    Article  CAS  PubMed  Google Scholar 

  99. Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, et al. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell. 2013;12:487–96.

    Article  CAS  PubMed  Google Scholar 

  100. Muratore CR, Rice HC, Srikanth P, Callahan DG, Shin T, Benjamin LN, et al. The familial Alzheimer’s disease APPV717I mutation alters APP processing and tau expression in iPSC-derived neurons. Hum Mol Genet. 2014;23:3523–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med. 1996;2:864–70.

    Article  CAS  PubMed  Google Scholar 

  102. Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, et al. Familial Alzheimer’s disease–linked presenilin 1 variants elevate Aβ1–42/1–40 ratio in vitro and in vivo. Neuron. 1996;17:1005–13.

    Article  CAS  PubMed  Google Scholar 

  103. Tomita T, Maruyama K, Saido TC, Kume H, Shinozaki K, Tokuhiro S, et al. The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid β protein ending at the 42nd (or 43rd) residue. Proc Natl Acad Sci U S A. 1997;94:2025–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sproul AA, Jacob S, Pre D, Kim SH, Nestor MW, Navarro-Sobrino M, et al. Characterization and molecular profiling of PSEN1 familial Alzheimer’s disease iPSC-derived neural progenitors. PLoS One. 2014;9:e84547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Moore S, Evans LD, Andersson T, Portelius E, Smith J, Dias TB, et al. APP metabolism regulates tau proteostasis in human cerebral cortex neurons. Cell Rep. 2015;11:689–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Young JE, Goldstein LSB. Alzheimer’s disease in a dish: promises and challenges of human stem cell models. Hum Mol Genet. 2012;21:R82–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Woodruff G, Young JE, Martinez FJ, Buen F, Gore A, Kinaga J, et al. The presenilin-1 ΔE9 mutation results in reduced γ-secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Rep. 2013;5:974–85.

    Article  CAS  PubMed  Google Scholar 

  108. Tanzi RE. The genetics of Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2:a006296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63:168–74.

    Article  PubMed  Google Scholar 

  110. Delgado-Morales R, Esteller M. Opening up the DNA methylome of dementia. Mol Psychiatry. 2017; doi:10.1038/mp.2016.242.

    PubMed  PubMed Central  Google Scholar 

  111. Lord J, Lu AJ, Cruchaga C. Identification of rare variants in Alzheimer’s disease. Front Genet. 2014;5:369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med. 2016;18:421–30.

    Article  PubMed  Google Scholar 

  113. Iatrou A, Kenis G, Rutten BPF, Lunnon K, van den Hove DLA. Epigenetic dysregulation of brainstem nuclei in the pathogenesis of Alzheimer’s disease: looking in the correct place at the right time? Cell Mol Life Sci. 2016;1–15

    Google Scholar 

  114. Duan L, Bhattacharyya BJ, Belmadani A, Pan L, Miller RJ, Kessler JA. Stem cell derived basal forebrain cholinergic neurons from Alzheimer’s disease patients are more susceptible to cell death. Mol Neurodegener. 2014;9:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Young JE, Boulanger-Weill J, Williams DA, Woodruff G, Buen F, Revilla AC, et al. Elucidating molecular phenotypes caused by the SORL1 Alzheimer’s disease genetic risk factor using human induced pluripotent stem cells. Cell Stem Cell. 2015;16:373–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Alagiakrishnan K, Gill SS, Fagarasanu A. Genetics and epigenetics of Alzheimer’s disease. Postgrad Med J. 2012;88:522–9.

    Article  CAS  PubMed  Google Scholar 

  117. Medway C, Morgan K. The genetics of Alzheimer’s disease; putting flesh on the bones. Neuropathol Appl Neurobiol. 2014;40:97–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, et al. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci U S A. 2005;102:13461–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dodson SE, Gearing M, Lippa CF, Montine TJ, Levey AI, Lah JJ. LR11/SorLA expression is reduced in sporadic Alzheimer disease but not in familial Alzheimer disease. J Neuropathol Exp Neurol. 2006;65:866–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hossini AM, Megges M, Prigione A, Lichtner B, Toliat MR, Wruck W, et al. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer’s disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics. 2015;16:84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Xu W, Tan L, Wang HF, Jiang T, Tan MS, Tan L, et al. Meta-analysis of modifiable risk factors for Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2015;86:1299–306.

    PubMed  Google Scholar 

  122. Kungulovski G, Jeltsch A. Epigenome editing: state of the art, concepts, and perspectives. Trends Genet. 2016;32:101–13.

    Article  CAS  PubMed  Google Scholar 

  123. Thakore PI, Black JB, Hilton IB, Gersbach CA. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods. 2016;13:127–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Barten DM, Meredith Jr JE, Zaczek R, Houston JG, Albright CF. Gamma-secretase inhibitors for Alzheimer’s disease: balancing efficacy and toxicity. Drugs R D. 2006;7:87–97.

    Article  CAS  PubMed  Google Scholar 

  125. Ghosh AK, Osswald HL. BACE1 (beta-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem Soc Rev. 2014;43:6765–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord. 2013;6:19–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lozano R, Rosero CA, Hagerman RJ. Fragile X spectrum disorders. Intractable Rare Dis Res. 2014;3:134–46.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Saldarriaga W, Tassone F, González-Teshima LY, Forero-Forero JV, Ayala-Zapata S, Hagerman R. Fragile X syndrome. Colomb Med. 2014;45:190–8.

    PubMed  PubMed Central  Google Scholar 

  129. Eberhart DE, Malter HE, Feng Y, Warren ST. The fragile X mental retardation protein is a ribonucleoprotein containing both nuclear localization and nuclear export signals. Hum Mol Genet. 1996;5:1083–91.

    Article  CAS  PubMed  Google Scholar 

  130. Ashley CT, Wilkinson KD, Reines D, Warren ST. FMR1 protein: conserved RNP family domains and selective RNA binding. Science. 1993;262:563–6.

    Article  CAS  PubMed  Google Scholar 

  131. Antar LN, Afroz R, Dictenberg JB, Carroll RC, Bassell GJ. Metabotropic glutamate receptor activation regulates fragile X mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. J Neurosci. 2004;24:2648–55.

    Article  CAS  PubMed  Google Scholar 

  132. Broek JAC. Lin Z, de Gruiter HM, van ‘t Spijker H, Haasdijk ED, cox D, et al. Synaptic vesicle dynamic changes in a model of fragile X Mol Autism. 2016;7:17.

    Google Scholar 

  133. Kremer EJ, Pritchard M, Lynch M, Yu S, Holman K, Baker E, et al. Mapping of DNA instability at the fragile-X to a Trinucleotide repeat sequence P(Ccg)N. Science. 1991;252:1711–4.

    Article  CAS  PubMed  Google Scholar 

  134. Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, et al. DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet. 1992;1:397–400.

    Article  CAS  PubMed  Google Scholar 

  135. Mailick MR, Hong J, Rathouz P, Baker MW, Greenberg JS, Smith L, et al. Low-normal FMR1 CGG repeat length: phenotypic associations. Front Genet. 2014;5:309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Miyashiro KY, Beckel-Mitchener A, Purk TP, Becker KG, Barret T, Liu L, et al. RNA cargoes associating with in cellular functioning in Fmrl Fmr1 reveal deficits null mice. Neuron. 2003;37:417–31.

    Article  CAS  PubMed  Google Scholar 

  137. Primerano B, Tassone F, Hagerman RJ, Hagerman P, Amaldi F, Bagni C. Reduced FMR1 mRNA translation efficiency in fragile X patients with premutations. RNA. 2002;8:1482–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Suhl JA, Warren ST. Single-nucleotide mutations in FMR1 reveal novel functions and regulatory mechanisms of the fragile X syndrome protein FMRP. J Exp Neurosci. 2015;9:35–41.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Brouwer JR, Mientjes EJ, Bakker CE, Nieuwenhuizen IM, Severijnen LA, Van der Linde HC, et al. Elevated Fmr1 mRNA levels and reduced protein expression in a mouse model with an unmethylated fragile X full mutation. Exp Cell Res. 2007;313:244–53.

    Article  CAS  PubMed  Google Scholar 

  140. Mor-Shaked H, Eiges R. Modeling fragile X syndrome using human pluripotent stem cells. Genes (Basel). 2016;7:77.

    Google Scholar 

  141. Urbach A, Bar-Nur O, Daley GQ, Benvenisty N. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell. 2010;6:407–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Khalfallah O, Jarjat M, Davidovic L, Nottet N, Cestèle S, Mantegazza M, et al. Depletion of the fragile X mental retardation protein in embryonic stem cells alters the kinetics of neurogenesis. Stem Cells. 2016; doi:10.1002/stem.2505.

    PubMed  Google Scholar 

  143. Ben-Reuven L, Reiner O. Modeling the autistic cell: iPSCs recapitulate developmental principles of syndromic and nonsyndromic ASD. Develop Growth Differ. 2016;58:481–91.

    Article  Google Scholar 

  144. Sheridan SD, Theriault KM, Reis SA, Zhou F, Madison JM, Daheron L, et al. Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS One. 2011;6:e26203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Doers ME, Musser MT, Nichol R, Berndt ER, Baker M, Gomez TM, et al. iPSC-derived forebrain neurons from FXS individuals show defects in initial Neurite outgrowth. Stem Cells Dev. 2014;23:1777–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Usdin K, Kumari D. Repeat-mediated epigenetic dysregulation of the FMR1 gene in the fragile X-related disorders. Front Genet. 2015;6:192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Liu J, Kościelska KA, Cao Z, Hulsizer S, Grace N, Mitchell G, et al. Signaling defects in iPSC-derived fragile X premutation neurons. Hum Mol Genet. 2012;21:3795–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. de Esch CEF, Ghazvini M, Loos F, Schelling-Kazaryan N, Widagdo W, Munshi ST, et al. Epigenetic characterization of the FMR1 promoter in induced pluripotent stem cells from human fibroblasts carrying an unmethylated full mutation. Stem Cell Rep. 2014;3:548–55.

    Article  CAS  Google Scholar 

  149. Park CY, Halevy T, Lee DR, Sung JJ, Lee JS, Yanuka O, et al. Reversion of FMR1 methylation and silencing by editing the triplet repeats in fragile X iPSC-derived neurons. Cell Rep. 2015;13:234–41.

    Article  CAS  PubMed  Google Scholar 

  150. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kumari D, Swaroop M, Southall N, Huang W, Zheng W, Usdin K. High-throughput screening to identify compounds that increase fragile X mental retardation protein expression in neural stem cells differentiated from fragile X syndrome patient-derived induced pluripotent stem cells. Stem Cells Transl Med. 2015;4:800–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Angelman H. “Puppet” children a report on three cases. Dev Med Child Neurol. 1965;7:681–8.

    Article  Google Scholar 

  153. Van Buggenhout G, Fryns JP. Angelman syndrome (AS, MIM 105830). Eur J Hum Genet. 2009;17:1367–73.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Trillingsgaard A, ØStergaard JR. Autism in Angelman syndrome: an exploration of comorbidity. Autism. 2004;8:163–74.

    Article  PubMed  Google Scholar 

  155. Cassidy SB, Driscoll DJ. Prader-Willi syndrome. Eur J Hum Genet. 2009;17:3–13.

    Article  CAS  PubMed  Google Scholar 

  156. Kalsner L, Chamberlain SJ. Prader-Willi, Angelman, and 15q11-q13 duplication syndromes. Pediatr Clin N Am. 2015;62:587–606.

    Article  Google Scholar 

  157. Koerner MV, Barlow DP. Genomic imprinting - an epigenetic gene-regulatory model. Curr Opin Genet Dev. 2010;20:164–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sanchez-Delgado M, Court F, Vidal E, Medrano J, Monteagudo-Sánchez A, Martin-Trujillo A, et al. Human oocyte-derived methylation differences persist in the placenta revealing widespread transient imprinting. PLoS Genet. 2016;12:e1006427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Wilkinson LS, Davies W, Isles AR. Genomic imprinting effects on brain development and function. Nat Rev Neurosci. 2007;8:832–43.

    Article  CAS  PubMed  Google Scholar 

  160. Horsthemke B, Wagstaff J. Mechanisms of imprinting of the Prader-Willi/Angelman region. Am J Med Genet. 2008;146A:2041–52.

    Article  CAS  PubMed  Google Scholar 

  161. Constância M, Pickard B, Kelsey G, Reik W. Imprinting mechanisms. Genome Res. 1998;8:881–900.

    Article  PubMed  Google Scholar 

  162. Butler MG. Prader-Willi syndrome: obesity due to genomic imprinting. Curr Genomics. 2011;12(3):204–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Cavaillé J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, et al. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci U S A. 2000;97:14311–6.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Sanchez-Delgado M, Riccio A, Eggermann T, Maher ER, Lapunzina P, Mackay D, et al. Causes and consequences of multi-locus imprinting disturbances in humans. Trends Genet. 2016;32:444–55.

    Article  CAS  PubMed  Google Scholar 

  165. LaSalle JM, Reiter LT, Chamberlain SJ. Epigenetic regulation of UBE3A and roles in human neurodevelopmental disorders. Epigenomics. 2015;7:1213–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hulbert SW, Jiang YH. Monogenic mouse models of autism spectrum disorders: common mechanisms and missing links. Neuroscience. 2016;321:3–23.

    Article  CAS  PubMed  Google Scholar 

  167. Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron. 1998;21:799–811.

    Article  CAS  PubMed  Google Scholar 

  168. Scheiffele P, Beg AA. Neuroscience: Angelman syndrome connections. Nature. 2010;468:907–8.

    Article  CAS  PubMed  Google Scholar 

  169. Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM, Flavell SW, et al. The Angelman syndrome protein Ube3A regulates synapse development by Ubiquitinating arc. Cell. 2010;140:704–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Bervini S, Herzog H. Mouse models of Prader–Willi syndrome: a systematic review. Front Neuroendocrinol. 2013;34:107–19.

    Article  CAS  PubMed  Google Scholar 

  171. Tan WH, Bird LM, Thibert RL, Williams CA. If not Angelman, what is it? A review of Angelman-like syndromes. Am J Med Genet A. 2014;164:975–92.

    Article  CAS  Google Scholar 

  172. Yang J, Cai J, Zhang Y, Wang X, Li W, Xu J, et al. Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader-Willi syndrome. J Biol Chem. 2010;285:40303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Chamberlain SJ, Chen PF, Ng KY, Bourgois-Rocha F, Lemtiri-Chlieh F, Levine ES, et al. Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader – Willi syndromes. Proc Natl Acad Sci U S A. 2010;107:17668–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Germain ND, Chen PF, Plocik AM, Glatt-Deeley H, Brown J, Fink JJ, et al. Gene expression analysis of human induced pluripotent stem cell-derived neurons carrying copy number variants of chromosome 15q11-q13.1. Mol Autism. 2014;5:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Rougeulle C, Cardoso C, Fontés M, Colleaux L, Lalande M. An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat Genet. 1998;19:15–6.

    Article  CAS  PubMed  Google Scholar 

  176. Vu TH, Hoffman AR. Imprinting of the Angelman syndrome gene, UBE3A, is restricted to brain. Nat Genet. 1997;17:12–3.

    Article  CAS  PubMed  Google Scholar 

  177. Martins-Taylor K, Hsiao JS, Chen PF, Glatt-Deeley H, De Smith AJ, Blakemore AIF, et al. Imprinted expression of UBE3A in non-neuronal cells from a Prader-willi syndrome patient with an atypical deletion. Hum Mol Genet. 2014;23:2364–73.

    Article  CAS  PubMed  Google Scholar 

  178. Chamberlain SJ, Germain ND, Chen PF, Hsiao JS, Glatt-Deeley H. Modeling genomic imprinting disorders using induced pluripotent stem cells. Methods Mol Biol. 2016;1353:45–64.

    Article  PubMed  Google Scholar 

  179. Chen PF, Hsiao JS, Sirois CL, Chamberlain SJ. RBFOX1 and RBFOX2 are dispensable in iPSCs and iPSC-derived neurons and do not contribute to neural-specific paternal UBE3A silencing. Sci Rep. 2016;6:25368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature. 2015;518:409–12.

    Article  CAS  PubMed  Google Scholar 

  181. Huang HS, Allen JA, Mabb AM, King IF, Miriyala J, Taylor-Blake B, et al. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature. 2011;481:185–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Katz DM, Bird A, Coenraads M, Gray SJ, Menon DU, Philpot BD, et al. Rett syndrome: crossing the threshold to clinical translation. Trends Neurosci. 2016;39:100–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Chahrour M, Zoghbi HY. The story of Rett syndrome: from clinic to neurobiology. Neuron. 2007;56:422–37.

    Article  CAS  PubMed  Google Scholar 

  184. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–8.

    Article  CAS  PubMed  Google Scholar 

  185. Dunn KW, Kamocka MM, McDonald JH. A practical guide to evaluating colocalization in biological microscopy. AJP Cell Physiol. 2011;300:C723–42.

    Article  CAS  Google Scholar 

  186. Dragich JM, Kim YH, Arnold AP, Schanen NC. Differential distribution of the MeCP2 splice variants in the postnatal mouse brain. J Comp Neurol. 2007;501:526–42.

    Article  PubMed  Google Scholar 

  187. Della Ragione F, Vacca M, Fioriniello S, Pepe G, D'Esposito M. MECP2, a multi-talented modulator of chromatin architecture. Brief Funct Genomics. 2016;15:420–31.

    PubMed  Google Scholar 

  188. Sáez MA, Fernández-Rodríguez J, Moutinho C, Sanchez-Mut JV, Gomez A, Vidal E, et al. Mutations in JMJD1C are involved in Rett syndrome and intellectual disability. Genet Med. 2016;18:378–85.

    Article  PubMed  CAS  Google Scholar 

  189. Lucariello M, Vidal E, Vidal S, Saez M, Roa L, Huertas D, et al. Whole exome sequencing of Rett syndrome-like patients reveals the mutational diversity of the clinical phenotype. Hum Genet. 2016;135:1343–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Petazzi P, Akizu N, García A, Estarás C. Martínez de Paz a, Rodríguez-Paredes M, et al. an increase in MECP2 dosage impairs neural tube formation. Neurobiol Dis. 2014;67:49–56.

    Article  CAS  PubMed  Google Scholar 

  191. Meins M, Lehmann J, Gerresheim F, Herchenbach J, Hagedorn M, Hameister K, et al. Submicroscopic duplication in Xq28 causes increased expression of the MECP2 gene in a boy with severe mental retardation and features of Rett syndrome. J Med Genet. 2005;42:e12–2.

    Google Scholar 

  192. Gemelli T, Berton O, Nelson ED, Perrotti LI, Jaenisch R, Monteggia LM. Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol Psychiatry. 2006;59:468–76.

    Article  CAS  PubMed  Google Scholar 

  193. Ausió J. Martinez de Paz a, Esteller M. MeCP2: the long trip from a chromatin protein to neurological disorders. Trends Mol Med. 2014;20:487–98.

    Article  PubMed  CAS  Google Scholar 

  194. Kucukkal TG, Yang Y, Uvarov O, Cao W, Alexov E. Impact of Rett syndrome mutations on MeCP2 MBD stability. Biochemistry. 2015;54:6357–68.

    Article  CAS  PubMed  Google Scholar 

  195. Brown K, Selfridge J, Lagger S, Connelly J, De Sousa D, Kerr A, et al. The molecular basis of variable phenotypic severity among common missense mutations causing Rett syndrome. Hum Mol Genet. 2016;25:558–70.

    Article  CAS  PubMed  Google Scholar 

  196. Stuss DP, Cheema M, Ng MK, Martinez de Paz A, Williamson B, Missiaen K, et al. Impaired in vivo binding of MeCP2 to chromatin in the absence of its DNA methyl-binding domain. Nucleic Acids Res. 2013;41:4888–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Christodoulou J, Grimm A, Maher T, Bennetts B. RettBASE: the IRSA MECP2 variation database-a new mutation database in evolution. Hum Mutat. 2003;21:466–72.

    Article  CAS  PubMed  Google Scholar 

  198. Gold WA, Christodoulou J. The utility of next-generation sequencing in Gene discovery for mutation-negative patients with Rett syndrome. Front Cell Neurosci. 2015;9:266.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Naidu S, Bibat G, Kratz L, Kelley RI, Pevsner J, Hoffman E, et al. Clinical variability in Rett syndrome. J Child Neurol. 2003;18:662–8.

    Article  PubMed  Google Scholar 

  200. Bao X, Jiang S, Song F, Pan H, Meirong Li WX-R. X chromosome inactivation in Rett syndrome and its correlations with MeCP2 mutations and phenotype. J Child Neurol. 2008;23:22–5.

    Google Scholar 

  201. Huang TW, Kochukov MY, Ward CS, Merritt J, Thomas K, Nguyen T, et al. Progressive changes in a distributed neural circuit underlie breathing abnormalities in mice lacking MeCP2. J Neurosci. 2016;36:5572–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels J, et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron. 2002;35:243–54.

    Article  CAS  PubMed  Google Scholar 

  203. Stearns NA, Schaevitz LR, Bowling H, Nag N, Berger UV, Berger-Sweeney J. Behavioral and anatomical abnormalities in Mecp2 mutant mice: a model for Rett syndrome. Neuroscience. 2007;146:907–21.

    Article  CAS  PubMed  Google Scholar 

  204. Pelka GJ, Watson CM, Radziewic T, Hayward M, Lahooti H, Christodoulou J, et al. Mecp2 deficiency is associated with learning and cognitive deficits and altered gene activity in the hippocampal region of mice. Brain. 2006;129:887–98.

    Article  PubMed  Google Scholar 

  205. Calfa G, Percy AK, Pozzo-Miller L. Experimental models of Rett syndrome based on Mecp2 dysfunction. Exp Biol Med. 2011;236:3–19.

    Article  CAS  Google Scholar 

  206. Rietveld L, Stuss DP, McPhee D, Delaney KR. Genotype-specific effects of Mecp2 loss-of-function on morphology of layer V pyramidal neurons in heterozygous female Rett syndrome model mice. Front Cell Neurosci. 2015;9:145.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Medrihan L, Tantalaki E, Aramuni G, Sargsyan V, Dudanova I, Missler M, et al. Early defects of GABAergic synapses in the brain stem of a MeCP2 mouse model of Rett syndrome. J Neurophysiol. 2008;99:112–21.

    Article  CAS  PubMed  Google Scholar 

  208. Chao HT, Zoghbi HY, Rosenmund C. MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron. 2007;56:58–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Viemari JC, Roux JC, Tryba AK, Saywell V, Burnet H, Peña F, et al. Mecp2 deficiency disrupts norepinephrine and respiratory systems in mice. J Neurosci. 2005;25:11521–30.

    Article  CAS  PubMed  Google Scholar 

  210. Szczesna K, de la Caridad O, Petazzi P, Soler M, Roa L, Saez MA, et al. Improvement of the Rett syndrome phenotype in a MeCP2 mouse model upon treatment with levodopa and a dopa-decarboxylase inhibitor. Neuropsychopharmacology. 2014;39:2846–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Ward CS, Arvide EM, Huang TW, Yoo J, Noebels JL, Neul JL. MeCP2 is critical within HoxB1 derived tissues of mice for normal lifespan. J Neurosci. 2011;31:10359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kim S, Broströmer E, Xing D, Jin J, Chong S, Ge H, et al. Probing allostery through DNA. Science. 2013;339:816–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lyst MJ, Bird A. Rett syndrome: a complex disorder with simple roots. Nat Rev Genet. 2015;16:261–75.

    Article  CAS  PubMed  Google Scholar 

  214. Beltrão-Braga PCB, Muotri AR. Modeling autism spectrum disorders with human neurons. Brain Res. 2016;1–8

    Google Scholar 

  215. Dajani R, Koo SE, Sullivan GJ, Park IH. Investigation of Rett syndrome using pluripotent stem cells. J Cell Biochem. 2013;114:2446–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Marchetto MCN, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, et al. A model for neural development and treatment of rett syndrome using human induced pluripotent stem cells. Cell. 2010;143:527–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Chin EWM, Marcy G, Yoon SI, Ma D, Rosales FJ, Augustine GJ, et al. Choline ameliorates disease phenotypes in human iPSC models of Rett syndrome. NeuroMolecular Med. 2016;18:364–77.

    Article  CAS  PubMed  Google Scholar 

  218. Djuric U, Cheung AYL, Zhang W, Mok RS, Lai W, Piekna A, et al. MECP2e1 isoform mutation affects the form and function of neurons derived from Rett syndrome patient iPS cells. Neurobiol Dis. 2015;76:37–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Kim KY, Hysolli E, Park IH. Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proc Natl Acad Sci U S A. 2011;108:14169–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Andoh-Noda T, Akamatsu W, Miyake K, Matsumoto T, Yamaguchi R, Sanosaka T, et al. Differentiation of multipotent neural stem cells derived from Rett syndrome patients is biased toward the astrocytic lineage. Mol Brain. 2015;8:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Cheung AYL, Horvath LM, Carrel L, Ellis J. X-chromosome inactivation in Rett syndrome human induced pluripotent stem cells. Front Psychiatry. 2012;3:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Williams EC, Zhong X, Mohamed A, Li R, Liu Y, Dong Q, et al. Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons. Hum Mol Genet. 2014;23:2968–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Delépine C, Meziane H, Nectoux J, Opitz M, Smith AB, Ballatore C, et al. Altered microtubule dynamics and vesicular transport in mouse and human MeCP2-deficient astrocytes. Hum Mol Genet. 2016;25:146–57.

    Article  PubMed  CAS  Google Scholar 

  224. Zhang ZN, Freitas BC, Qian H, Lux J, Acab A, Trujillo CA, et al. Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proc Natl Acad Sci U S A. 2016;113:3185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Amenduni M, De Filippis R, Cheung AYL, Disciglio V, Epistolato MC, Ariani F, et al. iPS cells to model CDKL5-related disorders. Eur J Hum Genet. 2011;19:1246–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Ricciardi S, Ungaro F, Hambrock M, Rademacher N, Stefanelli G, Brambilla D, et al. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat Cell Biol. 2012;14:911–23.

    Article  CAS  PubMed  Google Scholar 

  227. Bienvenu T, Chelly J. Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nat Rev Genet. 2006;7:415–26.

    Article  CAS  PubMed  Google Scholar 

  228. Aldinger KA, Plummer JT, Levitt P. Comparative DNA methylation among females with neurodevelopmental disorders and seizures identifies TAC1 as a MeCP2 target gene. J Neurodev Disord. 2013;5:15.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Li Y, Wang H, Muffat J, Cheng AW, Orlando DA, Lovén J, et al. Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell. 2013;13:446–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Akbarian S, Huang HS. Epigenetic regulation in human brain-focus on histone lysine methylation. Biol Psychiatry. 2009;65:198–203.

    Article  CAS  PubMed  Google Scholar 

  231. Ananiev G, Williams EC, Li H, Chang Q. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One. 2011;6:e25255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Kimbrel EA, Lanza R. Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov. 2015;14:681–92.

    Article  CAS  PubMed  Google Scholar 

  233. Hendriks WT, Warren CR, Cowan CA. Genome editing in human pluripotent stem cells: approaches, pitfalls, and solutions. Cell Stem Cell. 2016;18:53–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, et al. Editing DNA methylation in the mammalian genome. Cell. 2016;167:233–47.e17.

    Article  CAS  PubMed  Google Scholar 

  235. Tapia N, Schöler HR. Molecular obstacles to clinical translation of iPSCs. Cell Stem Cell. 2016;19:298–309.

    Article  CAS  PubMed  Google Scholar 

  236. Passier R, Orlova V, Mummery C. Complex tissue and disease modeling using hiPSCs. Cell Stem Cell. 2016;18:309–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Renzo J. M. Riemens is supported by Maastricht University (Maastricht, The Netherlands) and Julius Maximilians University (Würzburg, Germany). Edilene Siqueira Soares is supported by the National Council for Scientific and Technological Development (CNPQ; grant n. 202074/2015-3), Ministry of Science, Brazil. The work of laboratory is supported by, among other institutions, the EU Joint Programme – Neurodegenerative Disease Research (JPND), Cellex Foundation, the Health and Science Departments of the Catalan Government (Generalitat de Catalunya), the E-Rare (ERA-Net for research programs on rare diseases), and EuroRETT (a European network on Rett syndrome, funded by the European Commission under its 6th Framework Program since 2006). Dr. Manel Esteller is an ICREA Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Delgado-Morales Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Riemens, R.J.M., Soares, E.S., Esteller, M., Delgado-Morales, R. (2017). Stem Cell Technology for (Epi)genetic Brain Disorders. In: Delgado-Morales, R. (eds) Neuroepigenomics in Aging and Disease. Advances in Experimental Medicine and Biology(), vol 978. Springer, Cham. https://doi.org/10.1007/978-3-319-53889-1_23

Download citation

Publish with us

Policies and ethics