Skip to main content

Fast Nonnegative Matrix Factorization and Completion Using Nesterov Iterations

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10169))

Abstract

In this paper, we aim to extend Nonnegative Matrix Factorization with Nesterov iterations (Ne-NMF)—well-suited to large-scale problems—to the situation when some entries are missing in the observed matrix. In particular, we investigate the Weighted and Expectation-Maximization strategies which both provide a way to process missing data. We derive their associated extensions named W-NeNMF and EM-W-NeNMF, respectively. The proposed approaches are then tested on simulated nonnegative low-rank matrix completion problems where the EM-W-NeNMF is shown to outperform state-of-the-art methods and the W-NeNMF technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See for example the CPU-time consumptions of [27] at https://github.com/andrewssobral/lrslibrary.

  2. 2.

    As explained above, the standard approach was shown to be slow to converge in [32], because many MUs were applied at each M-step. To prevent such an issue, at each M-stage, we here run one NMF update per matrix factor, i.e., one MU.

  3. 3.

    In some preliminary tests, we noticed that the EM-W-ANLS method [16] provided a performance similar to EM-WNMF [32]. We thus do not include it in these tests.

References

  1. Candès, E.J., Plan, Y.: Matrix completion with noise. Proc. IEEE 98(6), 925–936 (2010)

    Article  Google Scholar 

  2. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Choo, J., Lee, C., Reddy, C.K., Park, H.: Weakly supervised nonnegative matrix factorization for user-driven clustering. Data Min. Knowl. Disc. 29(6), 1598–1621 (2015)

    Article  MathSciNet  Google Scholar 

  4. Chreiky, R., Delmaire, G., Puigt, M., Roussel, G., Courcot, D., Abche, A.: Split gradient method for informed non-negative matrix factorization. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds.) Proceedings of LVA/ICA, pp. 376–383 (2015)

    Google Scholar 

  5. Dorffer, C., Puigt, M., Delmaire, G., Roussel, G.: Blind calibration of mobile sensors using informed nonnegative matrix factorization. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds.) Proceedings of LVA/ICA, pp. 497–505 (2015)

    Google Scholar 

  6. Dorffer, C., Puigt, M., Delmaire, G., Roussel, G.: Blind mobile sensor calibration using an informed nonnegative matrix factorization with a relaxed rendezvous model. In: Proceedings of ICASSP, pp. 2941–2945 (2016)

    Google Scholar 

  7. Dorffer, C., Puigt, M., Delmaire, G., Roussel, G.: Nonlinear mobile sensor calibration using informed semi-nonnegative matrix factorization with a Vandermonde factor. In: Proceedings of SAM (2016)

    Google Scholar 

  8. Fazel, M.: Matrix rank minimization with applications. Ph.D. thesis, Stanford University (2002)

    Google Scholar 

  9. Guan, N., Tao, D., Luo, Z., Yuan, B.: NeNMF: an optimal gradient method for nonnegative matrix factorization. IEEE Trans. Signal Proc. 60(6), 2882–2898 (2012)

    Article  MathSciNet  Google Scholar 

  10. Guillamet, D., Vitrià, J., Schiele, B.: Introducing a weighted non-negative matrix factorization for image classification. Pattern Recogn. Lett. 24(14), 2447–2454 (2003)

    Article  MATH  Google Scholar 

  11. Haldar, J.P., Hernando, D.: Rank-constrained solutions to linear matrix equations using powerfactorization. IEEE Signal Process. Lett. 16(7), 584–587 (2009)

    Article  Google Scholar 

  12. Hamon, R., Emiya, V., Févotte, C.: Convex nonnegative matrix factorization with missing data. In: Procceedings of MLSP (2016)

    Google Scholar 

  13. Ho, N.D.: Nonnegative matrix factorizations algorithms and applications. Ph.D. thesis, Université Catholique de Louvain (2008)

    Google Scholar 

  14. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457–1469 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Kim, H., Park, H.: Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM J. Matrix Anal. Appl. 30(2), 713–730 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim, Y.D., Choi, S.: Weighted nonnegative matrix factorization. In: Proceedings of ICASSP, pp. 1541–1544, April 2009

    Google Scholar 

  17. Kumar, R., Da Silva, C., Akalin, O., Aravkin, A.Y., Mansour, H., Recht, B., Herrmann, F.J.: Efficient matrix completion for seismic data reconstruction. Geophysics 80(5), V97–V114 (2015)

    Article  Google Scholar 

  18. Lantéri, H., Theys, C., Richard, C., Févotte, C.: Split gradient method for nonnegative matrix factorization. In: Proceedings of EUSIPCO (2010)

    Google Scholar 

  19. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS, pp. 556–562 (2001)

    Google Scholar 

  20. Limem, A., Delmaire, G., Puigt, M., Roussel, G., Courcot, D.: Non-negative matrix factorization under equality constraints–a study of industrial source identification. Appl. Numer. Math. 85, 1–15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Limem, A., Puigt, M., Delmaire, G., Roussel, G., Courcot, D.: Bound constrained weighted NMF for industrial source apportionment. In: Proceedings of MLSP (2014)

    Google Scholar 

  22. Lin, C.: Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19(10), 2756–2779 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, C., Yang, H.C., Fan, J., He, L.W., Wang, Y.M.: Distributed nonnegative matrix factorization for web-scale dyadic data analysis on MapReduce. In: Proceedings of WWW Conference, April 2010

    Google Scholar 

  24. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11, 19–60 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(1/k2). Sov. Math. Doklady 27, 372–376 (1983)

    MATH  Google Scholar 

  26. Savvaki, S., Tsagkatakis, G., Panousopoulou, A., Tsakalides, P.: Application of matrix completion on water treatment data. In: Proceedings of CySWater, pp. 3:1–3:6 (2015)

    Google Scholar 

  27. Sobral, A., Bouwmans, T., Zahzah, E.: LRSLibrary: low-rank and sparse tools for background modeling and subtraction in videos. In: Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing. CRC Press, Taylor and Francis Group

    Google Scholar 

  28. Srebro, N., Jaakkola, T.: Weighted low-rank approximations. In: Proceedings of ICML (2003)

    Google Scholar 

  29. Tepper, M., Sapiro, G.: Compressed nonnegative matrix factorization is fast and accurate. IEEE Trans. Signal Process. 64(9), 2269–2283 (2016)

    Article  MathSciNet  Google Scholar 

  30. Wang, Y.X., Zhang, Y.J.: Nonnegative matrix factorization: a comprehensive review. IEEE Trans. Knowl. Data Eng. 25(6), 1336–1353 (2013)

    Article  Google Scholar 

  31. Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4(4), 333–361 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, S., Wang, W., Ford, J., Makedon, F.: Learning from incomplete ratings using non-negative matrix factorization, chap. 58, pp. 549–553 (2006)

    Google Scholar 

  33. Zhou, G., Cichocki, A., Xie, S.: Fast nonnegative matrix/tensor factorization based on low-rank approximation. IEEE Trans. Signal Process. 60(6), 2928–2940 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was funded by the “OSCAR” project within the Région Hauts-de-France “Chercheurs Citoyens” Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Puigt .

Editor information

Editors and Affiliations

A Proof of Lemmas 1 and 2

A Proof of Lemmas 1 and 2

Following the structure of the proof in [9], the proof of Lemma 1 is shown by noticing that

(19)

Let us now focus on the proof of Lemma 2. The Lipschitz continuity of \(\nabla _F \mathcal {J}_W\) can be shown by extending the proof in [9] to the weighted situation considered in this paper. However, the key point lies in the estimation of the “best” Lipschitz constant. Indeed, let us first recall that Q is a Lipschitz constant of \(\nabla _F \mathcal {J}_W (G,.)\) if, for any matrices \(F_1\) and \(F_2\),

$$\begin{aligned} \left| \left| \nabla _F \mathcal {J}_W(G,F_1)-\nabla _F \mathcal {J}_W(G,F_2) \right| \right| _\mathcal {F}\le Q\cdot \left| \left| F_1-F_2 \right| \right| _\mathcal {F}. \end{aligned}$$
(20)

From Eq. (7), it is obvious that the larger is the majoring constant Q, the smaller is the associated gradient step size and thus the convergence speed.

Considering the gradient expression (14), we derive

$$\begin{aligned} \left| \left| \nabla _F \mathcal {J}_W(G,F_1)-\nabla _F \mathcal {J}_W(G,F_2) \right| \right| _\mathcal {F} = \left| \left| G^T\cdot \left( W^2\circ \left( G\cdot \left( F_1-F_2\right) \right) \right) \right| \right| _\mathcal {F}. \end{aligned}$$
(21)

The singular value decomposition of G yields

$$\begin{aligned} \left| \left| \nabla _F \mathcal {J}_W(G,F_1)-\nabla _F \mathcal {J}_W(G,F_2) \right| \right| _\mathcal {F} \le \left| \left| G \right| \right| _2 \left| \left| W^2\circ \left( G\cdot \left( F_1-F_2\right) \right) \right| \right| _\mathcal {F}. \end{aligned}$$
(22)

At this stage, we need to put W and G out of the norm to obtain a Lipschitz constant. This can be done by assuming that any column and any row of M contains at least one element—i.e., any column and row of W contains at least one 1—and thus noticing that

$$\begin{aligned} \left| \left| W^2\circ \left( G\cdot \left( F_1-F_2\right) \right) \right| \right| _\mathcal {F} \le \left| \left| G \cdot \left( F_1-F_2\right) \right| \right| _\mathcal {F}, \end{aligned}$$
(23)

which provides, using another singular value decomposition of G:

$$\begin{aligned} \left| \left| \nabla _F \mathcal {J}_W(G,F_1)-\nabla _F \mathcal {J}_W(G,F_2) \right| \right| _\mathcal {F} \le \left| \left| G \right| \right| _2^2 \left| \left| F_1-F_2 \right| \right| _\mathcal {F}, \end{aligned}$$
(24)

i.e., the Lipschitz constant for W-NeNMF is L.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dorffer, C., Puigt, M., Delmaire, G., Roussel, G. (2017). Fast Nonnegative Matrix Factorization and Completion Using Nesterov Iterations. In: Tichavský, P., Babaie-Zadeh, M., Michel, O., Thirion-Moreau, N. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2017. Lecture Notes in Computer Science(), vol 10169. Springer, Cham. https://doi.org/10.1007/978-3-319-53547-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53547-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53546-3

  • Online ISBN: 978-3-319-53547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics