Skip to main content

Asymmetries in Cell Division, Cell Size, and Furrowing in the Xenopus laevis Embryo

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 61))

Abstract

Asymmetric cell divisions produce two daughter cells with distinct fate. During embryogenesis, this mechanism is fundamental to build tissues and organs because it generates cell diversity. In adults, it remains crucial to maintain stem cells. The enthusiasm for asymmetric cell division is not only motivated by the beauty of the mechanism and the fundamental questions it raises, but has also very pragmatic reasons. Indeed, misregulation of asymmetric cell divisions is believed to have dramatic consequences potentially leading to pathogenesis such as cancers. In diverse model organisms, asymmetric cell divisions result in two daughter cells, which differ not only by their fate but also in size. This is the case for the early Xenopus laevis embryo, in which the two first embryonic divisions are perpendicular to each other and generate two pairs of blastomeres, which usually differ in size: one pair of blastomeres is smaller than the other. Small blastomeres will produce embryonic dorsal structures, whereas the larger pair will evolve into ventral structures. Here, we present a speculative model on the origin of the asymmetry of this cell division in the Xenopus embryo. We also discuss the apparently coincident asymmetric distribution of cell fate determinants and cell-size asymmetry of the 4-cell stage embryo. Finally, we discuss the asymmetric furrowing during epithelial cell cytokinesis occurring later during Xenopus laevis embryo development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albertson R, Doe CQ (2003) Dlg, Scrib and Lgl regulate neuroblast cell size and mitotic spindle asymmetry. Nat Cell Biol 5:166–170

    Article  CAS  PubMed  Google Scholar 

  • Audhya A, Hyndman F, McLeod IX et al (2005) A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for embryonic cytokinesis in Caenorhabditis elegans. J Cell Biol 171:267–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer DV, Huang S, Moody SA (1994) The cleavage stage origin of Spemann’s organizer: analysis of the movements of blastomere clones before and during gastrulation in Xenopus. Development 120:1179–1189

    CAS  PubMed  Google Scholar 

  • Beckhelling C, Pérez-Mongiovi D, Houliston E (2000) Localised MPF regulation in eggs. Biol Cell 92:245–253

    Article  CAS  PubMed  Google Scholar 

  • Black SD, Gerhart JC (1985) Experimental control of the site of embryonic axis formation in Xenopus laevis eggs centrifuged before first cleavage. Dev Biol 108:310–324

    Article  CAS  PubMed  Google Scholar 

  • Bluemink JG, de Laat SW (1973) New membrane formation during cytokinesis in normal and cytochalasin B-treated eggs of Xenopus laevis. I. Electron microscope observations. J Cell Biol 59:89–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byers TJ, Armstrong PB (1986) Membrane protein redistribution during Xenopus first cleavage. J Cell Biol 102:2176–2184

    Article  CAS  PubMed  Google Scholar 

  • Carron C, Shi DL (2016) Specification of anteroposterior axis by combinatorial signaling during Xenopus development. Wiley Interdiscip Rev Dev Biol 5:150–168

    Article  CAS  PubMed  Google Scholar 

  • Chalmers AD, Strauss B, Papalopulu N (2003) Oriented cell divisions asymmetrically segregate aPKC and generate cell fate diversity in the early Xenopus embryo. Development 130:2657–2668

    Article  CAS  PubMed  Google Scholar 

  • Chang JB, Ferrell JE Jr (2013) Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle. Nature 500:603–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danilchik MV, Black SD (1988) The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. I. Independence in undisturbed embryos. Dev Biol 128:58–64

    Article  CAS  PubMed  Google Scholar 

  • Danilchik MV, Denegre JM (1991) Deep cytoplasmic rearrangements during early development in Xenopus laevis. Development 111:845–856

    CAS  PubMed  Google Scholar 

  • Danilchik MV, Gerhart JC (1987) Differentiation of the animal-vegetal axis in Xenopus laevis oocytes. I. Polarized intracellular translocation of platelets establishes the yolk gradient. Dev Biol 122(1):101–112

    Article  CAS  PubMed  Google Scholar 

  • Danilchik MV, Funk WC, Brown EE, Larkin K (1998) Requirement for microtubules in new membrane formation during cytokinesis of Xenopus embryos. Dev Biol 194:47–60. doi:10.1006/dbio.1997.8815

    Article  CAS  PubMed  Google Scholar 

  • Danilchik MV, Bedrick SD, Brown EE, Ray K (2003) Furrow microtubules and localized exocytosis in cleaving Xenopus laevis embryos. J Cell Sci 116:273–283

    Article  CAS  PubMed  Google Scholar 

  • Danilchik M, Williams M, Brown E (2013) Blastocoel-spanning filopodia in cleavage-stage Xenopus laevis: potential roles in morphogen distribution and detection. Dev Biol 382:70–81

    Article  CAS  PubMed  Google Scholar 

  • De Domenico E, Owens ND, Grant IM, Gomes-Faria R, Gilchrist MJ (2015) Molecular asymmetry in the 8-cell stage Xenopus tropicalis embryo described by single blastomere transcript sequencing. Dev Biol 408:252–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Laat WS, Bluemink JG (1974) New membrane formation during cytokinesis in normal and cytochalasin B-treated eggs of Xenopus laevis. II. Electrophysiological observations. J Cell Biol 60:529–540

    Article  PubMed  PubMed Central  Google Scholar 

  • Elinson RP (1980) The amphibian egg cortex in fertilization and early development. In: The cell surface: mediator of developmental processes, pp 217–234

    Google Scholar 

  • Elinson RP, Rowning B (1988) A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev Biol 128:185–197

    Article  CAS  PubMed  Google Scholar 

  • Fesenko I, Kurth T, Sheth B, Fleming TP, Citi S, Hausen P (2000) Tight junction biogenesis in the early Xenopus embryo. Mech Dev 96:51–65

    Article  CAS  PubMed  Google Scholar 

  • Founounou N, Loyer N, Le Borgne R (2013) Septins regulate the contractility of the actomyosin ring to enable adherens junction remodeling during cytokinesis of epithelial cells. Dev Cell 24:242–255

    Article  CAS  PubMed  Google Scholar 

  • Gerhart J, Keller R (1986) Region-specific cell activities in amphibian gastrulation. Annu Rev Cell Biol 2:201–229

    Article  CAS  PubMed  Google Scholar 

  • Gerhart J, Ubbels G, Black S, Hara K, Kirschner M (1981) A reinvestigation of the role of the gray crescent in axis formation in Xenopus laevis. Nature 292:511–517

    Article  CAS  PubMed  Google Scholar 

  • Gerhart JC et al (1984) Localization and induction in early development of Xenopus. Philos Trans R Soc Lond B Biol Sci 307:319–330

    Article  CAS  PubMed  Google Scholar 

  • Gerhart J, Danilchik M, Doniach T, Roberts S, Rowning B, Stewart R (1989) Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development 107(Suppl):37–51

    PubMed  Google Scholar 

  • Grant PA, Herold MB, Moody SA (2013) Blastomere explants to test for cell fate commitment during embryonic development. J Vis Exp. doi:10.3791/4458

    Google Scholar 

  • Glotzer M (1997) The mechanism and control of cytokinesis. Curr Opin Cell Biol 9:815823

    Article  Google Scholar 

  • Grill SW, Hyman AA (2005) Spindle positioning by cortical pulling forces. Dev Cell 8:461465

    Article  Google Scholar 

  • Guillot C, Lecuit T (2013) Adhesion disengagement uncouples intrinsic and extrinsic forces to drive cytokinesis in epithelial tissues. Dev Cell 24:227–241

    Article  CAS  PubMed  Google Scholar 

  • Hatte G, Tramier M, Prigent C, Tassan JP (2014) Epithelial cell division in the Xenopus laevis embryo during gastrulation. Int J Dev Biol 58:775–781

    Article  CAS  PubMed  Google Scholar 

  • Hausen P, Riebesell M (1991) The early development of Xenopus laevis: an altlas of the histology. Springer, New York

    Google Scholar 

  • Herszterg S, Leibfried A, Bosveld F, Martin C, Bellaiche Y (2013) Interplay between the dividing cell and its neighbors regulates adherens junction formation during cytokinesis in epithelial tissue. Dev Cell 24:256–270

    Article  CAS  PubMed  Google Scholar 

  • Hertwig O (1893) Ueber den Werth der ersten Furchungszellen fuer die Organbildung des Embryo. Experimentelle Studien am Frosch- und Tritonei. Arch Mikr Anat xlii:662–807

    Article  Google Scholar 

  • Houliston E, Elinson RP (1991) Evidence for the involvement of microtubules, ER, and kinesin in the cortical rotation of fertilized frog eggs. J Cell Biol 114:1017–1028

    Article  CAS  PubMed  Google Scholar 

  • Houston DW (2012) Cortical rotation and messenger RNA localization in Xenopus axis formation. Wiley Interdiscip Rev Dev Biol 1:371–388

    Article  CAS  PubMed  Google Scholar 

  • Ibanez E, Albertini DF, Overstrom EW (2005) Effect of genetic background and activating stimulus on the timing of meiotic cell cycle progression in parthenogenetically activated mouse oocytes. Reproduction 129:27–38

    Article  CAS  PubMed  Google Scholar 

  • Jinguji Y, Ishikawa H (1992) Electron microscopic observations on the maintenance of the tight junction during cell division in the epithelium of the mouse small intestine. Cell Struct Funct 17:27–37

    Article  CAS  PubMed  Google Scholar 

  • Kageura H (1997) Activation of dorsal development by contact between the cortical dorsal determinant and the equatorial core cytoplasm in eggs of Xenopus laevis. Development 124:1543–1551

    CAS  PubMed  Google Scholar 

  • Kalt MR (1971a) The relationship between cleavage and blastocoel formation in Xenopus laevis. I. Light microscopic observations. J Embryol Exp Morphol 26:37–49

    CAS  PubMed  Google Scholar 

  • Kalt MR (1971b) The relationship between cleavage and blastocoel formation in Xenopus laevis. II. Electron microscopic observations. J Embryol Exp Morphol 26:51–66

    CAS  PubMed  Google Scholar 

  • Keller R (2002) Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298:1950–1954

    Article  CAS  PubMed  Google Scholar 

  • Kikkawa M, Takano K, Shinagawa A (1996) Location and behavior of dorsal determinants during first cell cycle in Xenopus eggs. Development 122:3687–3696

    CAS  PubMed  Google Scholar 

  • King ML, Zhou Y, Bubunenko M (1999) Polarizing genetic information in the egg: RNA localization in the frog oocyte. Bioessays 21:546–557

    Article  CAS  PubMed  Google Scholar 

  • Klein SL (1987) The first cleavage furrow demarcates the dorsal-ventral axis in Xenopus embryos. Dev Biol 120:299–304

    Article  CAS  PubMed  Google Scholar 

  • Kloc M, Etkin LD (1994) Delocalization of Vg1 mRNA from the vegetal cortex in Xenopus oocytes after destruction of Xlsirt RNA. Science 265:1101–1103

    Article  CAS  PubMed  Google Scholar 

  • Larabell CA, Torres M, Rowning BA, Yost C, Miller JR, Wu M, Kimelman D, Moon RT (1997) Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. J Cell Biol 136:1123–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Page Y, Chartrain I, Badouel C, Tassan JP (2011) A functional analysis of MELK in cell division reveals a transition in the mode of cytokinesis during Xenopus development. J Cell Sci 124:958–968

    Article  CAS  PubMed  Google Scholar 

  • Lecuit T, Wieschaus E (2000) Polarized insertion of new membrane from a cytoplasmic reservoir during cleavage of the Drosophila embryo. J Cell Biol 150:849–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddox AS, Lewellyn L, Desai A, Oegema K (2007) Anillin and the septins promote asymmetric ingression of the cytokinetic furrow. Dev Cell 12:827–835

    Article  CAS  PubMed  Google Scholar 

  • Marrari Y, Rouvière C, Houliston E (2004) Complementary roles for dynein and kinesins in the Xenopus egg cortical rotation. Dev Biol 271:38–48

    Article  CAS  PubMed  Google Scholar 

  • Martin-Belmonte F, Perez-Moreno M (2011) Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer 12:23–38

    PubMed  Google Scholar 

  • Masho R (1990) Close correlation between the first cleavage plane and the body axis in early Xenopus embryos. Dev Growth Differ 32:57–64

    Article  Google Scholar 

  • Merzdorf CS, Chen YH, Goodenough DA (1998) Formation of functional tight junctions in Xenopus embryos. Dev Biol 195:187–203

    Article  CAS  PubMed  Google Scholar 

  • Mitchison TJ, Ishihara K, Nguyen P, Wühr M (2015) Size scaling of microtubule assemblies in early Xenopus embryos. Cold Spring Harb Perspect Biol 7:a019182

    Article  PubMed  Google Scholar 

  • Moody SA, Kline MJ (1990) Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres. Anat Embryol (Berl) 182:347–362

    Article  CAS  Google Scholar 

  • Morais-de-Sá E, Sunkel C (2013) Adherens junctions determine the apical position of the midbody during follicular epithelial cell division. EMBO Rep 14:696–703

    Article  PubMed  PubMed Central  Google Scholar 

  • Mowry KL, Cote CA (1999) RNA sorting in Xenopus oocytes and embryos. Faseb J 13:435–445

    CAS  PubMed  Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). North-Holland, Amsterdam

    Google Scholar 

  • Pérez-Mongiovi D, Chang P, Houliston E (1998) A propagated wave of MPF activation accompanies surface contraction waves at first mitosis in Xenopus. J Cell Sci 111(Pt 3):385–393

    PubMed  Google Scholar 

  • Prodon F, Chenevert J, Hebras C et al (2010) Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors. Development 137:2011–2021

    Article  CAS  PubMed  Google Scholar 

  • Rankin S, Kirschner MW (1997) The surface contraction waves of Xenopus eggs reflect the metachronous cell-cycle state of the cytoplasm. Curr Biol 7:451–454

    Article  CAS  PubMed  Google Scholar 

  • Reinsch S, Karsenti E (1994) Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J Cell Biol 126:1509–1526

    Article  CAS  PubMed  Google Scholar 

  • Sakai M (1996) The vegetal determinants required for the Spemann organizer move equatorially during the first cell cycle. Development 122:2207–2214

    CAS  PubMed  Google Scholar 

  • Scharf SR, Gerhart JC (1980) Determination of the dorsal-ventral axis in eggs of Xenopus laevis: complete rescue of uv-impaired eggs by oblique orientation before first cleavage. Dev Biol 79:181–198

    Article  CAS  PubMed  Google Scholar 

  • Schneider S, Steinbeisser H, Warga RM, Hausen P (1996) Beta-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev 57:191–198

    Article  CAS  PubMed  Google Scholar 

  • Schroeder MM, Gard DL (1992) Organization and regulation of cortical microtubules during the first cell cycle of Xenopus eggs. Development 114:699–709

    CAS  PubMed  Google Scholar 

  • Souza KA, Black SD, Wassersug RJ (1995) Amphibian development in the virtual absence of gravity. Proc Natl Acad Sci U S A 92:1975–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart-savage J, Grey RD (1982) The temporal and spatial relationships between cortical contraction, sperm trail formation and pronuclear migration in fertilized Xenopus eggs. Wilhelm Rouxs Arch Dev Biol 191:241–245

    Article  CAS  Google Scholar 

  • Ubbels GA, Hara K, Koster CH, Kirschner MW (1983) Evidence for a functional role of the cytoskeleton in determination of the dorsoventral axis in Xenopus laevis eggs. J Embryol Exp Morphol 77:15–37

    CAS  PubMed  Google Scholar 

  • Vincent JP, Gerhart JC (1987) Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification. Dev Biol 123:526–539

    Article  CAS  PubMed  Google Scholar 

  • Vincent JP, Oster GF, Gerhart JC (1986) Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface. Dev Biol 113:484–500

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Racowsky C, Deng M (2011) Mechanism of the chromosome-induced polar body extrusion in mouse eggs. Cell Div 6:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Wühr M, Dumont S, Groen AC, Needleman DJ, Mitchison TJ (2009) How does a millimeter-sized cell find its center? Cell Cycle 8:1115–1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Wühr M, Tan ES, Parker SK, Detrich HW 3rd, Mitchison TJ (2010) A model for cleavage plane determination in early amphibian and fish embryos. Curr Biol 20:2040–2045

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Michael V. Danilchik (Oregon Health and Sciences University, Portland, OR, USA) and Malgorzata Kloc (the Houston Methodist Hospital, Houston TX, USA) for helpful discussion and comments on the manuscript. We also thank the Microscopy Rennes Imaging Center (MRic, BIOSIT, IBiSA). Work in our lab was supported by le Centre National de la Recherche Scientifique (CNRS) and l’Agence Nationale de la Recherche (ANR, KinBioFRET). G.H. was supported by the MENESR and partly by a grant from the Ligue Nationale contre le Cancer. MW was supported by Princeton University start-up funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Tassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tassan, JP., Wühr, M., Hatte, G., Kubiak, J. (2017). Asymmetries in Cell Division, Cell Size, and Furrowing in the Xenopus laevis Embryo. In: Tassan, JP., Kubiak, J. (eds) Asymmetric Cell Division in Development, Differentiation and Cancer. Results and Problems in Cell Differentiation, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-53150-2_11

Download citation

Publish with us

Policies and ethics