Skip to main content

Towards Seamless Navigation

  • Chapter
  • First Online:
Book cover Multi-Technology Positioning

Abstract

Seamless navigation using one single mobile device would ease navigation. This goal demands detection of context. That is the environment (outdoor, indoor, car, etc.) and behaviour (walk, run, climb, etc.) of the location and user. Each positioning technology (inertial, radio frequency, sound, etc.) has its inherent characteristics. If correctly designed, the navigation system uses multiple sensors and combines the best characteristics of the available sensors in an optimal way. Battery consumption and accuracy of the system meets the needs for all environments. The user would not be aware of how the device works so well all the time—a seamless navigation device. This chapter provides a review of the available sensors and methods that can be used to complement GNSS, in scenarios where GNSS is not enough for seamless navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Bai et al., Helping the blind to find the floor of destination in multistory buildings using a barometer, in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), July 2013, pp. 4738–4741. doi:10.1109/EMBC.2013.6610606

    Google Scholar 

  2. S.J.M. Bamberg et al., Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans. Inform. Technol. Biomed. 12 (4), 413–423 (2008). ISSN:1089-7771. doi:10.1109/TITB.2007.899493

    Google Scholar 

  3. S. Boll, A. Asif, W. Heuten, Feel your route: a tactile display for car navigation. IEEE Pervasive Comput. 10 (3), 35–42 (2011). ISSN:1536-1268. doi:10.1109/MPRV.2011.39

    Google Scholar 

  4. C.R. Carlson, J.C. Gerdes, J.D Powell, Practical position and yaw rate estimation with GPS and differential wheelspeeds, in Proceedings of AVEC Japan (2002)

    Google Scholar 

  5. O. Daniel et al., Blind sub-Nyquist GNSS signal detection, in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar 2016, pp. 6575–6579. doi:10.1109/ICASSP.2016.7472944

    Google Scholar 

  6. Z. Deng et al., Situation and development tendency of indoor positioning. China Commun. 10 (3), 42–55 (2013). ISSN:1673-5447. doi:10.1109/CC.2013.6488829

    Google Scholar 

  7. P.D. Groves, Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems (Artech House, Boston, 2013)

    MATH  Google Scholar 

  8. P.D. Groves, The PNT boom, future trends in integrated navigation, in Inside GNSS Magazine (2013)

    Google Scholar 

  9. P.D. Groves et al., The four key challenges of advanced multisensor navigation and positioning, in 2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014, May 2014, pp. 773–792. doi:10.1109/PLANS.2014.6851443

    Google Scholar 

  10. R. Harle, A survey of indoor inertial positioning systems for pedestrians. IEEE Commun. Surv. Tutorials 15 (3), 1281–1293 (2013). ISSN:1553-877X. doi:10.1109/SURV.2012.121912.00075

    Google Scholar 

  11. A.J. Haug, Bayesian Estimation and Tracking - A Practical Guide (Wiley, Hoboken, 2012)

    Book  MATH  Google Scholar 

  12. M. Hazas, A. Hopper, Broadband ultrasonic location systems for improved indoor positioning. IEEE Trans. Mobile Comput. 5 (5), 536–547 (2006). ISSN:1536-1233. doi:10.1109/TMC.2006

    Google Scholar 

  13. F. Hflinger et al., Acoustic indoor-localization system for smart phones, in 2014 11th International Multi-Conference on Systems, Signals Devices (SSD), Feb 2014, pp. 1–4. doi:10.1109/SSD.2014.6808774

    Google Scholar 

  14. G. Jee, J.-H. Song, A study on GPS/DR car navigation system using vehicle movement information, in Coordinates, Dec 2010

    Google Scholar 

  15. S. Jeon et al., Indoor WPS/PDR performance enhancement using map matching algorithm with mobile phone, in 2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014, May 2014, pp. 385–392. doi:10.1109/PLANS.2014.6851396

    Google Scholar 

  16. S. Khalifa, M. Hassan, A. Seneviratne, Adaptive pedestrian activity classification for indoor dead reckoning systems, in 2013 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Oct 2013, pp. 1–7. doi:10.1109/IPIN.2013.6817868

    Google Scholar 

  17. T. Kivimaki et al., A review on device-free passive indoor positioning methods. Int. J. Smart Home 8 (1), 71–94 (2014). doi:10.14257/ijsh.2014.8.1.09

    Google Scholar 

  18. C. Kray, G. Kortuem, Adaptive positioning for ambient systems. Kunstliche Intell. 21 (4), 56–61 (2007)

    Google Scholar 

  19. M. Laverne et al., Experimental validation of foot to foot range measurements in pedestrian tracking, in Proceedings of ION GNSS (2011)

    Google Scholar 

  20. B. Li et al., How feasible is the use of magnetic field alone for indoor positioning? in 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nov 2012, pp. 1–9. doi:10.1109/IPIN.2012.6418880

    Google Scholar 

  21. X. Liu et al., Multisensor joint tracking and identification using particle filter and Dempster-Shafer fusion, in 2012 15th International Conference on Information Fusion (FUSION), July 2012, pp. 902–909

    Google Scholar 

  22. E.S. Lohan, J. Talvitie, G.S. Granados, Data fusion approaches for WiFi fingerprinting, in 2016 International Conference on Localization and GNSS (ICL-GNSS), June 2016, pp. 1–6. doi:10.1109/ICL-GNSS.2016.7533847

    Google Scholar 

  23. R.C. Luo, C.C. Chang, C.C. Lai, Multisensor fusion and integration: theories, applications, and its perspectives. IEEE Sensors J. 11 (12), 3122–3138 (2011). ISSN:1530-437X. doi:10.1109/JSEN.2011.2166383

    Google Scholar 

  24. R. Mautz, Indoor positioning technologies, Ph.D. thesis. ETH Zurich, 2012

    Google Scholar 

  25. X. Meng et al., Assessment of UWB for ubiquitous positioning and navigation, in Ubiquitous Positioning, Indoor Navigation, and Location Based Service (UPINLBS), Oct 2012, pp. 1–6. doi:10.1109/UPINLBS.2012.6409783

    Google Scholar 

  26. A. Mulloni et al., Indoor positioning and navigation with camera phones. IEEE Pervasive Comput. 8 (2), 22–31 (2009). ISSN:1536-1268. doi:10.1109/MPRV.2009.30

    Google Scholar 

  27. T.L. Nguyen, Y. Zhang, M. Griss, ProbIN: probabilistic inertial navigation, in The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010), Nov 2010, pp. 650–657. doi:10.1109/MASS.2010.5663779

    Google Scholar 

  28. Open Geospatial Consortium. IndoorGML Indoor Location Standards Working Group, www.opengeospatial.org. Accessed on 08 Jan 2016

  29. J. Pinchin, C. Hide, T. Moore, A particle filter approach to indoor navigation using a foot mounted inertial navigation system and heuristic heading information, in 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nov 2012, pp. 1–10. doi:10.1109/IPIN.2012.6418916

    Google Scholar 

  30. A.G. Quinchia et al., Analysis and modelling of MEMS inertial measurement unit, in 2012 International Conference on Localization and GNSS, Jun 2012, pp. 1–7. doi:10.1109/ICL-GNSS.2012.6253129.

    Google Scholar 

  31. K. Rein, J. Biermann, Your high-level information is my low-level data—a new look at terminology for multi-level fusion, in 2013 16th International Conference on Information Fusion (FUSION), July 2013, pp. 412–417

    Google Scholar 

  32. M. Reinstein, M. Hoffmann, Dead reckoning in a dynamic quadruped robot: inertial navigation system aided by a legged odometer, in 2011 IEEE International Conference on Robotics and Automation (ICRA), May 2011, pp. 617–624. doi:10.1109/ICRA.2011.5979609

    Google Scholar 

  33. I. Rishabh, D. Kimber, J. Adcock, Indoor localization using controlled ambient sounds, in 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nov 2012, pp. 1–10. doi:10.1109/IPIN.2012.6418905

    Google Scholar 

  34. A. Rivero-Rodriguez, H. Leppkoski, R. Pich, Semantic labeling of places based on phone usage features using supervised learning, in Ubiquitous Positioning Indoor Navigation and Location Based Service (UPINLBS), Nov 2014, pp. 97–102. doi:10.1109/UPINLBS.2014.7033715

    Google Scholar 

  35. L. Snidaro et al., Context in fusion: some considerations in a JDL perspective, in 2013 16th International Conference on Information Fusion (FUSION), July 2013, pp. 115–120

    Google Scholar 

  36. J. Torres-Solis, T.H. Falk, T. Chau, A review of indoor localization technologies: towards navigational assistance for topographical disorientation, in Ambient Intelligence, ed. by F.J.V. Molina (INTECH Open Access Publisher, 2010)

    Google Scholar 

  37. C. Yang, A. Soloviev, Covariance analysis of spatial and temporal effects of collaborative navigation, in 2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014, May 2014, pp. 989–998. doi:10.1109/PLANS.2014.6851464

    Google Scholar 

  38. F. Zampella et al., A constraint approach for UWB and PDR fusion, in 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nov 2012, pp. 1–9. doi:10.1109/IPIN.2012.6418929

    Google Scholar 

  39. F. Zampella et al., Unscented Kalman filter and magnetic angular rate update (MARU) for an improved pedestrian dead-reckoning, in 2012 IEEE/ION Position Location and Navigation Symposium (PLANS), Apr 2012, pp. 129–139. doi:10.1109/PLANS.2012.6236874

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by EU FP7 Marie Curie Initial Training Network MULTI-POS (Multi-technology Positioning Professionals) under grant nr. 316528.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekka Peltola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Peltola, P., Moore, T. (2017). Towards Seamless Navigation. In: Nurmi, J., Lohan, ES., Wymeersch, H., Seco-Granados, G., Nykänen, O. (eds) Multi-Technology Positioning. Springer, Cham. https://doi.org/10.1007/978-3-319-50427-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50427-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50426-1

  • Online ISBN: 978-3-319-50427-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics