Skip to main content

On the Ordering of Orbital Energies in the ROHF Method: Koopmans’ Theorem versus Aufbau Principle

  • Conference paper
  • First Online:
Quantum Systems in Physics, Chemistry, and Biology

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 30))

  • 1192 Accesses

Abstract

The restricted open-shell Hartree-Fock (ROHF) method in its different formulations is a standard tool used by quantum chemists for studying open-shell systems. This work presents a discussion of specific difficulties which arise in the ROHF method in those cases where the orbital energies violate the Aufbau principle (AP). The AP violations are often treated in the literature as a deficiency of both a ROHF method leading to these violations and of the respective computational results. We summarize examples of different AP violations and analyze them from the viewpoint of both Koopmans’ theorem (KT) and experimental ionization potentials. We show that the main source of AP violations is a specific ordering of the ROHF orbital energies based on the orbital occupancies. In those cases, where the orbital energies obey KT, the violations of the AP reflect the physical reality. To overcome computational difficulties which arise in the iterative SCF procedure, we describe a simple and effective orbital-energy scaling technique which enables one to perform ROHF computations of systems violating the Aufbau principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fock VA (1930) Zs f Phys 61:126

    Article  Google Scholar 

  2. Koopmans TA (1934) Physica (Amsterdam) 1:104

    Article  Google Scholar 

  3. Roothaan CCJ (1960) Rev Mod Phys 32:179

    Article  Google Scholar 

  4. Dyadyusha GG, Kuprievich VA (1965) Theor Exp Chem 1:262

    Article  Google Scholar 

  5. Hirao K, Nakatsuji H (1973) J Chem Phys 59:1457

    Article  CAS  Google Scholar 

  6. McWeeny R, Diercksen G (1968) J Chem Phys 49:4852

    Article  CAS  Google Scholar 

  7. Davidson ER (1973) Chem Phys Lett 21:565

    Article  CAS  Google Scholar 

  8. Binkley JS, Pople JA, Dobosh PA (1974) Mol Phys 28:1423

    Article  CAS  Google Scholar 

  9. Guest MF, Saunders VR (1974) Mol Phys 28:819

    Article  CAS  Google Scholar 

  10. Faegri K, Manne R (1976) Mol Phys 31:1037

    Article  CAS  Google Scholar 

  11. Bouscasse L, Jaffé HH (1979) J Chem Phys 71:4969

    Article  CAS  Google Scholar 

  12. Tsuchimochi T, Scuseria GE (2010) J Chem Phys 133:141102

    Article  Google Scholar 

  13. Glaesemann KR, Schmidt MW (2010) J Phys Chem A 114:8772

    Article  CAS  Google Scholar 

  14. Plakhutin BN, Gorelik EV, Breslavskaya NN (2006) J Chem Phys 125:204110

    Article  CAS  Google Scholar 

  15. Plakhutin BN, Davidson ER (2009) J Phys Chem A 113:12386

    Article  CAS  Google Scholar 

  16. Davidson ER, Plakhutin BN (2010) J Chem Phys 132:184110

    Article  Google Scholar 

  17. Plakhutin BN, Davidson ER (2014) J Chem Phys 140:014102

    Article  Google Scholar 

  18. Carbό R, Riera JM (1978) A general SCF theory. Lecture notes in chemistry, vol 5. Springer, Berlin

    Google Scholar 

  19. Plakhutin BN (2014) J Struct Chem 55:1001

    Article  CAS  Google Scholar 

  20. Pople JA, Nesbet RK (1954) J Chem Phys 22:571

    Article  CAS  Google Scholar 

  21. http://www.msg.ameslab.gov/GAMESS/GAMESS.html

  22. Schmidt MW, Baldridge KK, Boatz JA et al (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  23. Roothaan CCJ, Bagus PS (1963) Methods Comput Phys 2:47

    Google Scholar 

  24. Huzinaga S (1983) Metod Molekulayrnyh Orbitalei (Method of Molecular Orbitals). Mir, Moscow (translated from Japanese to Russian)

    Google Scholar 

  25. As pointed out by Koopmans in his Nobel prize lecture: http://www.nobelprize.org/economics/laureates/1975/koopmans-autobio.html, the proof of this result has been given by Kramers

  26. Plakhutin BN (2012) Book of abstracts. In: XVII international workshop on quantum systems in chemistry and physics, Turku, Finland, 2012. Åbo Akademi University, p 23

    Google Scholar 

  27. Ivanic J (2003) J Chem Phys 119:9364; ibid (2003) 119:9377

    Google Scholar 

  28. Plakhutin BN, Breslavskaya NN, Gorelik EV, Arbuznikov AV (2005) J Molec Struct: THEOCHEM 727:149

    Article  CAS  Google Scholar 

  29. Yang S, Wang CR (eds) (2014) Endohedral fullerenes. From fundamentals to applications. World Scientific, Singapore

    Google Scholar 

  30. Greer JC (2000) Chem Phys Lett 326:567

    Article  CAS  Google Scholar 

  31. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165

    Article  CAS  Google Scholar 

  32. Grigor’ev IS, Meilikhov EZ (eds) (1991) Fizicheskie velichiny (Physical quantities), Handbook, (Energo-Atom-Izdat, Moscow) (in Russian)

    Google Scholar 

  33. Zimmerman JA, Eyler JR, Bach SBH, McElvany SW (1991) J Chem Phys 94:3556

    Article  CAS  Google Scholar 

  34. Clementi E, Roetti C (1974) At Data Nucl Data Tables 14:177

    Article  CAS  Google Scholar 

  35. Froese Fisher C (1977) The Hartree-Fock method for atoms: a numerical approach. Wiley, New York

    Google Scholar 

  36. Partridge H (1989) J Chem Phys 90:1043

    Article  CAS  Google Scholar 

  37. http://www.emsl.pnl.gov/forms/basisform.html

  38. Brillouin LN (1934) J Phys Radium 5:413

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Ernest R. Davidson for many valuable discussions. This work was conducted within the framework of budget project No. 0303-2016-0001 for Boreskov Institute of Catalysis and was supported by the Russian Foundation for Basic Research under Grant No. RFBR 15-03-00830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Plakhutin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 213 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Plakhutin, B.N., Novikov, A.V., Polygalova, N.E., Prokhorov, T.E. (2017). On the Ordering of Orbital Energies in the ROHF Method: Koopmans’ Theorem versus Aufbau Principle. In: Tadjer, A., Pavlov, R., Maruani, J., Brändas, E., Delgado-Barrio, G. (eds) Quantum Systems in Physics, Chemistry, and Biology. Progress in Theoretical Chemistry and Physics, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-50255-7_2

Download citation

Publish with us

Policies and ethics