Skip to main content

Towards Air Quality Estimation Using Collected Multimodal Environmental Data

  • Conference paper
  • First Online:
Collective Online Platforms for Financial and Environmental Awareness (IFIN 2016, ISEM 2016)

Abstract

This paper presents an open platform, which collects multimodal environmental data related to air quality from several sources including official open sources, social media and citizens. Collecting and fusing different sources of air quality data into a unified air quality indicator is a highly challenging problem, leveraging recent advances in image analysis, open hardware, machine learning and data fusion. The collection of data from multiple sources aims at having complementary information, which is expected to result in increased geographical coverage and temporal granularity of air quality data. This diversity of sources constitutes also the main novelty of the platform presented compared with the existing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.hackair.eu.

References

  1. ActAQ! https://www.newschallenge.org/challenge/data/entries/actaq-an-air-pollution-mobile-app-with-you-mind

  2. Aiello, L.M., Petkos, G., Martin, C., Corney, D., Papadopoulos, S., Skraba, R., Goker, A., Kompatsiaris, I., Jaimes, A.: Sensing trending topics in twitter. IEEE Trans. Multimedia 15(6), 1268–1282 (2013)

    Article  Google Scholar 

  3. Air Visual. https://airvisual.com/

  4. AirCasting. http://aircasting.org/

  5. AirForU. https://www.uclahealth.org/Pages/AirForU-App.aspx/

  6. AirTick. https://www.youtube.com/watch?v=l11abvYgvBY

  7. Amsterdam Smart Citizens Lab. https://waag.org/en/project/amsterdam-smart-citizens-lab

  8. App for Kids to ID Asthma Attack Triggers. http://www.healthdatamanagement.com/news/App-for-Kids-to-ID-Asthma-Attack-Triggers-51675-1.html

  9. Arduino. https://www.arduino.cc/en/Main/Products

  10. Banshirne. http://banshirne.com/

  11. CAPTOR. http://captor-project.eu/

  12. Chen, H., Fan, H., Chau, M., Zeng, D.: Metaspider: meta-searching and categorization on the web. J. Am. Soc. Inform. Sci. Technol. 52(13), 1134–1147 (2001)

    Article  Google Scholar 

  13. CITI-SENSE. http://www.citi-sense.eu/

  14. Clean Air Nation (greenpeace India). http://www.greenpeace.org/india/clean-air-nation/

  15. Cox, S., et al.: Observations and measurements-xml implementation. OGC document (2011)

    Google Scholar 

  16. Selectors Level 3. https://www.w3.org/TR/css3-selectors/

  17. Denby, B., Schaap, M., Segers, A., Builtjes, P., Horálek, J.: Comparison of two data assimilation methods for assessing PM\(_{10}\) exceedances on the European scale. Atmos. Environ. 42(30), 7122–7134 (2008). http://www.sciencedirect.com/science/article/pii/S1352231008005803

    Article  Google Scholar 

  18. Epitropou, V., Karatzas, K.D., Bassoukos, A., Kukkonen, J., Balk, T.: A new environmental image processing method for chemical weather forecasts in Europe. In: Golinska, P., Fertsch, M., Marx-Gómez, J. (eds.) Information Technologies in Environmental Engineering. Environmental Science and Engineering, vol. 3, pp. 781–791. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. idokep. www.idokep.hu

  20. iSCAPE. http://horizon2020projects.com/sc-climate-action/h2020-making-cities-sustainable/

  21. Johansson, L., Epitropou, V., Karatzas, K., Karppinen, A., Wanner, L., Vrochidis, S., Bassoukos, A., Kukkonen, J., Kompatsiaris, I.: Fusion of meteorological and air quality data extracted from the web for personalized environmental information services. Environ. Model. Softw. 64, 143–155 (2015)

    Article  Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  23. Markatopoulou, F., Mezaris, V., Pittaras, N., Patras, I.: Local features and a two-layer stacking architecture for semantic concept detection in video. IEEE Trans. Emerg. Top. Comput. 3(2), 193–204 (2015)

    Article  Google Scholar 

  24. Na, A., Priest, M.: Sensor observation service. Implementation Standard OGC (2007)

    Google Scholar 

  25. Oyama, S., Kokubo, T., Ishida, T.: Domain-specific web search with keyword spices. IEEE Trans. Knowl. Data Eng. 16(1), 17–27 (2004)

    Article  Google Scholar 

  26. PASODOBLE. http://lap.physics.auth.gr/pasodoble.asp

  27. PESCaDO. http://www.iosb.fraunhofer.de/servlet/is/30549/

  28. PSoC. http://www.cypress.com/products/psoc-4-ble-bluetooth-smart

  29. Ricchiazzi, P., Yang, S., Gautier, C., Sowle, D.: Sbdart: a research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere. Bull. Am. Meteorol. Soc. 79(10), 2101–2114 (1998)

    Article  Google Scholar 

  30. Saito, M., Iwabuchi, H.: A new method of measuring aerosol optical properties from digital twilight photographs. Atmos. Meas. Tech. 8(10), 4295–4311 (2015)

    Article  Google Scholar 

  31. Tang, M., Agrawal, P., Pongpaichet, S., Jain, R.: Geospatial interpolation analytics for data streams in eventshop. In: 2015 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2015)

    Google Scholar 

  32. Ubreathe. http://ee.ricardo.com/ubreathe/

  33. Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vision 104(2), 154–171 (2013)

    Article  Google Scholar 

  34. World Air quality. https://itunes.apple.com/us/app/world-air-quality/id396958256?mt=8

  35. XML Path Language (XPath). https://www.w3.org/TR/xpath20/

  36. Zerefos, C., Tetsis, P., Kazantzidis, A., Amiridis, V., Zerefos, S., Luterbacher, J., Eleftheratos, K., Gerasopoulos, E., Kazadzis, S., Papayannis, A.: Further evidence of important environmental information content in red-to-green ratios as depicted in paintings by great masters. Atmos. Chem. Phys. 14(6), 2987–3015 (2014)

    Article  Google Scholar 

  37. Zheng, H.T., Kang, B.Y., Kim, H.G.: An ontology-based approach to learnable focused crawling. Inf. Sci. 178(23), 4512–4522 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially funded by the European Commission under the contract number H2020-688363 hackAIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Moumtzidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Moumtzidou, A. et al. (2016). Towards Air Quality Estimation Using Collected Multimodal Environmental Data. In: Satsiou, A., et al. Collective Online Platforms for Financial and Environmental Awareness. IFIN ISEM 2016 2016. Lecture Notes in Computer Science(), vol 10078. Springer, Cham. https://doi.org/10.1007/978-3-319-50237-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50237-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50236-6

  • Online ISBN: 978-3-319-50237-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics