Skip to main content

Peeking into Sigma-1 Receptor Functions Through the Retina

  • Chapter
  • First Online:
Sigma Receptors: Their Role in Disease and as Therapeutic Targets

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 964))

Abstract

This review discusses recent advances towards understanding the sigma-1 receptor (S1R) as an endogenous neuro-protective mechanism in the retina , a favorable experimental model system. The exquisite architecture of the mammalian retina features layered and intricately wired neurons supported by non-neuronal cells. Ganglion neurons, photoreceptors , as well as the retinal pigment epithelium, are susceptible to degeneration that leads to major retinal diseases such as glaucoma , diabetic retinopathy , and age-related macular degeneration (AMD), and ultimately, blindness. The S1R protein is found essentially in every retinal cell type, with high abundance in the ganglion cell layer. Ultrastructural studies of photoreceptors, bipolar cells, and ganglion cells show a predominant localization of S1R in the nuclear envelope. A protective role of S1R for ganglion and photoreceptor cells is supported by in vitro and in vivo experiments. Most recently, studies suggest that S1R may also protect retinal neurons via its activities in Müller glia and microglia. The S1R functions in the retina may be attributed to a reduction of excitotoxicity, oxidative stress , ER stress response, or inflammation. S1R knockout mice are being used to delineate the S1R-specific effects. In summary, while significant progress has been made towards the objective of establishing a S1R-targeted paradigm for retinal neuro-protection , critical questions remain. In particular, context-dependent effects and potential side effects of interventions targeting S1R need to be studied in more diverse and more clinically relevant animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quirion R et al (1992) A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 13:85–86

    Article  CAS  PubMed  Google Scholar 

  2. Hanner M et al (1996) Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci U S A 93:8072–8077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Xu J et al (2011) Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site. Nat Commun 2:380

    Article  PubMed Central  PubMed  Google Scholar 

  4. Chu UB, ML C, Yang H, Guo L-W, Ruoho AE (2015) The Sigma-2 receptor and PGRMC1 are different binding sites derived from independent genes. EBioMedicine 2:1806–1813

    Google Scholar 

  5. Hellewell SB, Bowen WD (1990) A sigma-like binding site in rat pheochromocytoma (PC12) cells: decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain. Brain Res 527:244–253

    Article  CAS  PubMed  Google Scholar 

  6. Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    CAS  PubMed  Google Scholar 

  7. Su TP (1982) Evidence for sigma opioid receptor: binding of [3H]SKF-10047 to etorphine-inaccessible sites in guinea-pig brain. J Pharmacol Exp Ther 223:284–290

    Google Scholar 

  8. Su TP, Hayashi T, Maurice T, Buch S, Ruoho AE (2010) The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci 31:557–566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ortega-Roldan JL, Ossa F, Amin NT, Schnell JR (2015) Solution NMR studies reveal the location of the second transmembrane domain of the human sigma-1 receptor. FEBS Lett 589:659–665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Langa F et al (2003) Generation and phenotypic analysis of sigma receptor type I (sigma 1) knockout mice. Eur J Neurosci 18:2188–2196

    Article  PubMed  Google Scholar 

  11. Nguyen L et al (2015) Role of sigma-1 receptors in neurodegenerative diseases. J Pharmacol Sci 127:17–29

    Article  CAS  PubMed  Google Scholar 

  12. Chu UB, Ruoho AE (2016) Biochemical pharmacology of the Sigma-1 receptor. Mol Pharmacol 89:142–153

    Article  CAS  PubMed  Google Scholar 

  13. Su TP, London ED, Jaffe JH (1988) Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems. Science 240:219–221

    Article  CAS  PubMed  Google Scholar 

  14. Fontanilla D et al (2009) The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 323:934–937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ramachandran S et al (2009) The sigma1 receptor interacts with N-alkyl amines and endogenous sphingolipids. Eur J Pharmacol 609:19–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hayashi T, Su T (2004) sigma-1 receptors at galactosylceramide-enriched lipid microdomains regulate oligodendrocyte differentiation. Proc Natl Acad Sci U S A 101:14949–14954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Tsai SY, Pokrass MJ, Klauer NR, Nohara H, Su T (2015) sigma-1 receptor regulates Tau phosphorylation and axon extension by shaping p35 turnover via myristic acid. Proc Natl Acad Sci U S A 112:6742–6747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hedskog L et al (2013) Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer's disease and related models. Proc Natl Acad Sci U S A 110:7916–7921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Francardo V et al (2014) Pharmacological stimulation of sigma-1 receptors has neurorestorative effects in experimental parkinsonism. Brain J Neurol 137:1998–2014

    Article  Google Scholar 

  20. Mavlyutov TA et al (2013) Lack of sigma-1 receptor exacerbates ALS progression in mice. Neuroscience 240:129–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Mavlyutov TA, Guo LW, Epstein ML, Ruoho AE (2015) Role of the Sigma-1 receptor in Amyotrophic Lateral Sclerosis (ALS). J Pharmacol Sci 127:10–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Smith SB et al (2008) In vivo protection against retinal neurodegeneration by sigma receptor 1 ligand (+)-pentazocine. Invest Ophthalmol Vis Sci 49:4154–4161

    Article  PubMed Central  PubMed  Google Scholar 

  23. Mavlyutov TA, Nickells RW, Guo LW (2011) Accelerated retinal ganglion cell death in mice deficient in the Sigma-1 receptor. Mol Vis 17:1034–1043

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Ha Y et al (2014) Sigma receptor 1 modulates ER stress and Bcl2 in murine retina. Cell Tissue Res 356:15–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Shimazawa M, Sugitani S, Inoue Y, Tsuruma K, Hara H (2015) Effect of a sigma-1 receptor agonist, cutamesine dihydrochloride (SA4503), on photoreceptor cell death against light-induced damage. Exp Eye Res 132:64–72

    Article  CAS  PubMed  Google Scholar 

  26. Sung CH, Chuang JZ (2010) The cell biology of vision. J Cell Biol 190:953–963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mac Nair CE, Nickells RW (2015) Neuroinflammation in glaucoma and optic nerve damage. Prog Mol Biol Transl Sci 134:343–363

    Article  CAS  PubMed  Google Scholar 

  28. Kourrich S, Su TP, Fujimoto M, Bonci A (2012) The sigma-1 receptor: roles in neuronal plasticity and disease. Trends Neurosci 35:762–771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hayashi T, Su T (2007) sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131:596–610

    Article  CAS  PubMed  Google Scholar 

  30. Balasuriya D, Stewart AP, Edwardson JM (2013) The sigma-1 receptor interacts directly with GluN1 but not GluN2A in the GluN1/GluN2A NMDA receptor. J Neurosci 33:18219–18224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. MacVicar TD, Mannack LV, Lees RM, Lane JD (2015) Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells. Int J Mol Sci 16:13356–13380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Vollrath JT et al (2014) Loss of function of the ALS protein SigR1 leads to ER pathology associated with defective autophagy and lipid raft disturbances. Cell Death Dis 5:e1290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Omi T et al (2014) Fluvoxamine alleviates ER stress via induction of Sigma-1 receptor. Cell Death Dis 5:e1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Mori T, Hayashi T, Hayashi E, Su T (2013) sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival. PLoS One 8:e76941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Tsai SA et al (2015) Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope. Proc Natl Acad Sci U S A 112(47):E6562–E6570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Jiang G et al (2006) Expression, subcellular localization, and regulation of sigma receptor in retinal muller cells. Invest Ophthalmol Vis Sci 47:5576–5582

    Article  PubMed Central  PubMed  Google Scholar 

  37. Mavlyutov TA, Epstein M, Guo LW (2015) Subcellular localization of the sigma-1 receptor in retinal neurons – an electron microscopy study. Sci Report 5:10689

    Article  CAS  Google Scholar 

  38. Wu Z, Bowen WD (2008) Role of sigma-1 receptor C-terminal segment in inositol 1,4,5-trisphosphate receptor activation: constitutive enhancement of calcium signaling in MCF-7 tumor cells. J Biol Chem 283:28198–28215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Mishra AK et al (2015) The sigma-1 receptors are present in monomeric and oligomeric forms in living cells in the presence and absence of ligands. Biochem J 466:263–271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Gromek KA et al (2014) The oligomeric states of the purified sigma-1 receptor are stabilized by ligands. J Biol Chem 289:20333–20344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Chu UB, Ramachandran S, Hajipour AR, Ruoho AE (2013) Photoaffinity labeling of the sigma-1 receptor with N-[3-(4-nitrophenyl)propyl]-N-dodecylamine: evidence of receptor dimers. Biochemistry 52:859–868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC (2015) Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 54(7):716–725

    Google Scholar 

  43. Ola MS et al (2001) Expression pattern of sigma receptor 1 mRNA and protein in mammalian retina. Brain Res Mol Brain Res 95:86–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Ola MS et al (2002) Analysis of sigma receptor (sigmaR1) expression in retinal ganglion cells cultured under hyperglycemic conditions and in diabetic mice. Brain Res Mol Brain Res 107:97–107

    Article  PubMed Central  PubMed  Google Scholar 

  45. Liu LL, Wang L, Zhong YM, Yang XL (2010) Expression of sigma receptor 1 mRNA and protein in rat retina. Neuroscience 167:1151–1159

    Article  CAS  PubMed  Google Scholar 

  46. Zhang XJ et al (2011) sigma receptor 1 is preferentially involved in modulation of N-methyl-D-aspartate receptor-mediated light-evoked excitatory postsynaptic currents in rat retinal ganglion cells. Neurosignals 19:110–116

    Article  CAS  PubMed  Google Scholar 

  47. Zhang XJ, Liu LL, Jiang SX, Zhong YM, Yang XL (2011) Activation of the zeta receptor 1 suppresses NMDA responses in rat retinal ganglion cells. Neuroscience 177:12–22

    Article  CAS  PubMed  Google Scholar 

  48. Bucolo C, Drago F (2004) Effects of neurosteroids on ischemia-reperfusion injury in the rat retina: role of sigma1 recognition sites. Eur J Pharmacol 498:111–114

    Article  CAS  PubMed  Google Scholar 

  49. Bucolo C, Drago F (2007) Neuroactive steroids protect retinal tissue through sigma1 receptors. Basic Clin Pharmacol Toxicol 100:214–216

    Article  CAS  PubMed  Google Scholar 

  50. Cantarella G et al (2007) Protective effects of the sigma agonist Pre-084 in the rat retina. Br J Ophthalmol 91:1382–1384

    Article  PubMed Central  PubMed  Google Scholar 

  51. Bucolo C et al (2006) A novel adamantane derivative attenuates retinal ischemia-reperfusion damage in the rat retina through sigma1 receptors. Eur J Pharmacol 536:200–203

    Article  CAS  PubMed  Google Scholar 

  52. Senda T, Mita S, Kaneda K, Kikuchi M, Akaike A (1998) Effect of SA4503, a novel sigma1 receptor agonist, against glutamate neurotoxicity in cultured rat retinal neurons. Eur J Pharmacol 342:105–111

    Article  CAS  PubMed  Google Scholar 

  53. Krishnamoorthy RR, Clark AF, Daudt D, Vishwanatha JK, Yorio T (2013) A forensic path to RGC-5 cell line identification: lessons learned. Invest Ophthalmol Vis Sci 54:5712–5719

    Article  PubMed  Google Scholar 

  54. Nickells RW, Howell GR, Soto I, John SW (2012) Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci 35:153–179

    Article  CAS  PubMed  Google Scholar 

  55. Martin PM, Ola MS, Agarwal N, Ganapathy V, Smith SB (2004) The sigma receptor ligand (+)-pentazocine prevents apoptotic retinal ganglion cell death induced in vitro by homocysteine and glutamate. Brain Res Mol Brain Res 123:66–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Dun Y, Thangaraju M, Prasad P, Ganapathy V, Smith SB (2007) Prevention of excitotoxicity in primary retinal ganglion cells by (+)-pentazocine, a sigma receptor-1 specific ligand. Invest Ophthalmol Vis Sci 48:4785–4794

    Article  PubMed Central  PubMed  Google Scholar 

  57. Ha Y et al (2011) Sigma receptor 1 modulates endoplasmic reticulum stress in retinal neurons. Invest Ophthalmol Vis Sci 52:527–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Tchedre KT, Yorio T (2008) Sigma-1 receptors protect RGC-5 cells from apoptosis by regulating intracellular calcium, Bax levels, and caspase-3 activation. Invest Ophthalmol Vis Sci 49:2577–2588

    Article  PubMed  Google Scholar 

  59. Tchedre KT et al (2008) Sigma-1 receptor regulation of voltage-gated calcium channels involves a direct interaction. Invest Ophthalmol Vis Sci 49:4993–5002

    Article  PubMed  Google Scholar 

  60. Mueller BH 2nd et al (2013) Sigma-1 receptor stimulation attenuates calcium influx through activated L-type Voltage Gated Calcium Channels in purified retinal ganglion cells. Exp Eye Res 107:21–31

    Article  CAS  PubMed  Google Scholar 

  61. Mueller BH 2nd et al (2014) Sigma-1 receptor stimulation protects retinal ganglion cells from ischemia-like insult through the activation of extracellular-signal-regulated kinases 1/2. Exp Eye Res 128:156–169

    Article  CAS  PubMed  Google Scholar 

  62. Ha Y et al (2011) Late-onset inner retinal dysfunction in mice lacking sigma receptor 1 (sigmaR1). Invest Ophthalmol Vis Sci 52:7749–7760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Ha Y et al (2012) Diabetes accelerates retinal ganglion cell dysfunction in mice lacking sigma receptor 1. Mol Vis 18:2860–2870

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Chong RS, Martin KR (2015) Glial cell interactions and glaucoma. Curr Opin Ophthalmol 26:73–77

    Article  PubMed Central  PubMed  Google Scholar 

  65. Shanmugam A et al (2015) Sigma receptor 1 activation attenuates release of inflammatory cytokines MIP1gamma, MIP2, MIP3alpha, and IL12 (p40/p70) by retinal Muller glial cells. J Neurochem 132:546–558

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Wang J et al (2015) Sigma 1 receptor regulates the oxidative stress response in primary retinal Muller glial cells via NRF2 signaling and system xc(−), the Na(+)-independent glutamate-cystine exchanger. Free Radic Biol Med 86:25–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Vogler S et al (2016) Sigma-1 receptor activation inhibits osmotic swelling of rat retinal glial (Muller) cells by transactivation of glutamatergic and purinergic receptors. Neurosci Lett 610:13–18

    Article  CAS  PubMed  Google Scholar 

  68. Zhao J et al (2014) Sigma receptor ligand, (+)-pentazocine, suppresses inflammatory responses of retinal microglia. Invest Ophthalmol Vis Sci 55:3375–3384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Ferrington DA, Sinha D, Kaarniranta K (2015) Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration. Prog Retin Eye Res 51:69–89

    Article  PubMed Central  PubMed  Google Scholar 

  70. Cuenca N et al (2014) Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 43:17–75

    Article  CAS  PubMed  Google Scholar 

  71. Bucolo C, Drago F, Lin LR, Reddy VN (2006) Sigma receptor ligands protect human retinal cells against oxidative stress. Neuroreport 17:287–291

    Article  CAS  PubMed  Google Scholar 

  72. Kim JY et al (2013) Noncanonical autophagy promotes the visual cycle. Cell 154:365–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Kaarniranta K et al (2013) Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy 9:973–984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Schrock JM et al (2013) Sequential cytoprotective responses to Sigma1 ligand-induced endoplasmic reticulum stress. Mol Pharmacol 84:751–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Eye Institute grant R01EY022678 and a Morgridge Institute for Research & the James Christenson Estate Macular Degeneration Research Award (to L-W Guo), and P30EY016665 and S10OD018221 (to the University of Wisconsin Vision Core). The project was also supported by the Clinical and Translational Science Award (CTSA) program, through the NIH National Center for Advancing Translational Sciences (NCATS), grant UL1TR000427. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

We thank Drs. Miles L. Epstein and Arnold E. Ruoho for critical comments. We also thank Dr. Laura Hogan at the University of Wisconsin Institute for Clinical & Translational Research (ICTR) for editing and proof-reading.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG (outside the USA)

About this chapter

Cite this chapter

Mavlyutov, T.A., Guo, LW. (2017). Peeking into Sigma-1 Receptor Functions Through the Retina. In: Smith, S., Su, TP. (eds) Sigma Receptors: Their Role in Disease and as Therapeutic Targets. Advances in Experimental Medicine and Biology, vol 964. Springer, Cham. https://doi.org/10.1007/978-3-319-50174-1_19

Download citation

Publish with us

Policies and ethics