Skip to main content

Damage Identification by Dynamic Load Monitoring

  • Chapter
  • First Online:
Lamb-Wave Based Structural Health Monitoring in Polymer Composites

Part of the book series: Research Topics in Aerospace ((RTA))

  • 1411 Accesses

Abstract

A damage in an elastic material can have different causes, such as a crack, a hole or a delamination in case of a layered material. All of these defects alter the dynamic behaviour of the structure, which means that a wave, which propagates along the structure, is affected in a certain way. The method, that is being outlined in this chapter, relies on the idea that the difference of the wave propagation in the undamaged structure and in the damaged structure is caused by a (virtual) external force which is interpreted as the cause of altered wave properties such as reflections, attenuation or mode conversions. Computing the origin of this external volume force then enables us to locate the damage. Since we use time-dependent data, this method is called dynamic load monitoring and works as follows. First we simulate the wave propagation in an undamaged structure, e.g. a plate, by solving a corresponding initial boundary value problem, that is based on the equations of linear elastodynamics. Evaluating the solution u R at the observed boundary values leads to a reference measurement Qu R , where Q denotes the so-called observation operator. This observation operator must be seen as the mathematical model of the specific data acquisition. Having the outcome Qu D of the same measurements of a damaged plate at hand we subtract the reference data from the measured ones. In this way all sources e.g. gravitation is removed from the signal, since the underlying PDE is linear, and the remaining sources therefore can be interpreted as caused by defects. This is the key idea of our method. Besides proving existence and uniqueness of a solution of the underlying initial boundary value problem, we precisely describe the implementation of our method and show its numerical performance when applied to a transversely isotropic material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Figure 2 from F. Binder, F. Schöpfer and T. Schuster, PDE-based defect localization in fibre-reinforced composites from surface sensor measurements, Inverse Problems, 31(2):22pp, DOI:10.1088/0266-5611/31/2/025006, 2015. ©IOP Publishing. Reproduced with permission. All rights reserved.

  2. 2.

    Figure 3 from F. Binder, F. Schöpfer and T. Schuster, PDE-based defect localization in fibre-reinforced composites from surface sensor measurements, Inverse Problems, 31(2):22pp, DOI:10.1088/0266-5611/31/2/025006, 2015. ©IOP Publishing. Reproduced with permission. All rights reserved.

  3. 3.

    Figure 4 from F. Binder, F. Schöpfer and T. Schuster, PDE-based defect localization in fibre-reinforced composites from surface sensor measurements, Inverse Problems, 31(2):22pp, DOI:10.1088/0266-5611/31/2/025006, 2015. ©IOP Publishing. Reproduced with permission. All rights reserved.

  4. 4.

    Figure 5 from F. Binder, F. Schöpfer and T. Schuster, PDE-based defect localization in fibre-reinforced composites from surface sensor measurements, Inverse Problems, 31(2):22pp, DOI:10.1088/0266-5611/31/2/025006, 2015. ©IOP Publishing. Reproduced with permission. All rights reserved.

  5. 5.

    Figures 6 and 7 from F. Binder, F. Schöpfer and T. Schuster, PDE-based defect localization in fibre-reinforced composites from surface sensor measurements, Inverse Problems, 31(2):22pp, DOI:10.1088/0266-5611/31/2/025006, 2015. ©IOP Publishing. Reproduced with permission. All rights reserved.

References

  1. Abubakar A, Hu W, van den Berg P, Habashy T (2008) A finite-difference contrast source inversion method. Inverse Prob 24:17pp. Article ID 065004

    Google Scholar 

  2. Bal G, Monard F, Uhlmann G (2015) Reconstruction of a fully anisotropic elasticity tensor from knowledge of displacement fields. arXiv:1501.05361

    Google Scholar 

  3. Bangerth W, Hartmann R, Kanschat G (2007) deal.II – a general purpose object oriented finite element library. ACM Trans Math Softw 33(4):24/1–24/27

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbone PE, Gokhale NH (2004) Elastic modulus imaging: on the uniqueness and nonuniqueness of the elastography inverse problem in two dimensions. Inverse Prob 20:283–296

    Article  MathSciNet  MATH  Google Scholar 

  5. Beretta E, Francini E, Morassi A, Rosset E, Vessella S (2014) Lipschitz continuous dependence of piecewise constant Lamé coefficients from boundary data: the case of non-flat interfaces. Inverse Prob 30:18 pp. Article ID 125005

    Google Scholar 

  6. Beylkin G, Burridge R (1990) Linearized inverse scattering problems in acoustics and elasticity. Wave Motion 12(1):15–52

    Article  MathSciNet  MATH  Google Scholar 

  7. Binder F, Schöpfer F, Schuster T (2015) PDE-based defect localization in fibre-reinforced composites from surface measurements. Inverse Prob 31(2):025006

    Article  MATH  Google Scholar 

  8. Bonnet M, Constantinescu A (2005) Inverse problems in elasticity. Inverse Prob 21:R1–R50

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourgeois L, Lunéville E (2013) On the use of the linear sampling method to identify cracks in elastic waveguides. Inverse Prob 29:025017

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourgeois L, Louër FL, Lunéville E (2011) On the use of Lamb modes in the linear sampling method for elastic waveguides. Inverse Prob 27(5). Article ID 055001

    Google Scholar 

  11. Ciarlet P (1988) Mathematical elasticity volume I: three-dimensional elasticity. Elsevier Science Publishers B.V, Amsterdam

    MATH  Google Scholar 

  12. Colton D, Kirsch A (1996) A simple method for solving inverse scattering problems in the resonance region. Inverse Prob 12:383–393

    Article  MathSciNet  MATH  Google Scholar 

  13. Derveaux G, Papanicolaou G, Tsogka C (2007) Time reversal imaging for sensor networks with optimal compensation in time. J Acoust Soc Am 121:2071–2085

    Article  Google Scholar 

  14. Devaney A (1983) Inverse source and scattering problems in ultrasonics. IEEE Trans Sonics Ultrasonics 30(6):355–363

    Article  Google Scholar 

  15. Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems. Mathematics and its applications. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  16. Glowinski R, Ciarlet P, Lions J (2002) Numerical methods for fluids. Handbook of numerical analysis, vol 3. Elsevier, Amsterdam

    Google Scholar 

  17. Habashy T, Mittra R (1987) On some inverse methods in electromagnetics. J Electromag Waves Appl 1(1):25–58

    Article  MathSciNet  Google Scholar 

  18. Habashy T, Oristaglio M (1994) Simultaneous nonlinear reconstruction of two-dimensional permittivity and conductivity. Radio Sci 29(4):1101–1118

    Article  Google Scholar 

  19. Hähner P (2002) On uniqueness for an inverse problem in inhomogeneous elasticity. IMA J Appl Math 67(2):127–143

    Article  MathSciNet  MATH  Google Scholar 

  20. Holzapfel G (2000) Nonlinear solid mechanics. Wiley, New York

    MATH  Google Scholar 

  21. Imanuvilov OY, Yamamoto M (2011) On reconstruction of Lamé coefficients from partial Cauchy data. J Inv Ill-Posed Prob 19:881–891

    MATH  Google Scholar 

  22. Imanuvilov OY, Uhlmann G, Yamamoto M (2013) On uniqueness of Lamé coefficients from partial cauchy data in three dimensions. Inverse Prob 28(12):125002

    Article  MATH  Google Scholar 

  23. Kaltenbacher B, Lorenzi A (2007) A uniqueness result for a nonlinear hyperbolic equation. Appl Anal 86(11):1397–1427

    Article  MathSciNet  MATH  Google Scholar 

  24. Lions J (1971) Optimal control of systems gouverned by partial differential equations. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin

    Book  Google Scholar 

  25. Lions J, Magenes E, Kenneth P (1972) Non-homogeneous boundary value problems and applications. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin

    Book  MATH  Google Scholar 

  26. Louis AK (1989) Inverse und schlecht gestellte Probleme. Teubner, Stuttgart

    Book  MATH  Google Scholar 

  27. Marsden JE, Hughes TJR (1994) Mathematical foundations of elasticity. Dover, New York

    MATH  Google Scholar 

  28. Mazzucato AL, Rachele LV (2006) Partial uniqueness and obstruction to uniqueness in inverse problems for anisotropic elastic media. J Elast 83:205–245

    Article  MathSciNet  MATH  Google Scholar 

  29. Michaels J, Pao YH (1985) The inverse source problem for an oblique force on an elastic plate. J Acoust Soc Am 77(6):2005–2011

    Article  MATH  Google Scholar 

  30. Nakamura G, Uhlmann G (1994) Global uniqueness for an inverse boundary problem arising in elasticity. Invent Math 118:457–474

    Article  MathSciNet  MATH  Google Scholar 

  31. Nakamura G, Uhlmann G (1995) Inverse problems at the boundary for an elastic medium. SIAM J Math Anal 26:263–279

    Article  MathSciNet  MATH  Google Scholar 

  32. Oleinik O, Shamaev A, Yosifian G (1992) Mathematical problems in elasticity and homogenization. North-Holland, Amsterdam

    MATH  Google Scholar 

  33. Santosa F, Pao YH, Symes W (1984) Inverse problems of acoustic and elastic waves. In: Santosa F, Pao YH, Symes W, Holland, C (eds) Inverse problems of acoustic and elastic waves. SIAM, Philadelphia, pp 274–302

    Google Scholar 

  34. Schürmann H (2008) Konstruieren mit Faser-Kunststoff-Verbunden. VDI-Buch.Springer, Berlin

    Google Scholar 

  35. Sedipkov AA (2011) Direct and inverse problems of the theory of wave propagation in an elastic inhomogeneous medium. J Inv Ill-Posed Prob 19(3):511–523

    MathSciNet  MATH  Google Scholar 

  36. Simo JC, Tarnow N (1992) The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z Angew Math Phys 43:757–792

    Article  MathSciNet  MATH  Google Scholar 

  37. Wloka J (1987) Partial differential equations. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  38. Wöstehoff A, Schuster T (2015) Uniqueness and stability result for Cauchy’s equation of motion for a certain class of hyperelastic materials. Appl Anal 94(8):1561–1593

    Article  MathSciNet  MATH  Google Scholar 

  39. Yamamoto M (1995) Stability, reconstruction formula and regularization for an inverse source hyperbolic problem by a control method. Inverse Prob 11:481–496

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Schuster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Schuster, T., Schöpfer, F. (2018). Damage Identification by Dynamic Load Monitoring. In: Lammering, R., Gabbert, U., Sinapius, M., Schuster, T., Wierach, P. (eds) Lamb-Wave Based Structural Health Monitoring in Polymer Composites. Research Topics in Aerospace. Springer, Cham. https://doi.org/10.1007/978-3-319-49715-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49715-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49714-3

  • Online ISBN: 978-3-319-49715-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics