Skip to main content

Use of Emerging 3D Printing and Modeling Technologies in the Health Domain

A Systematic Literature Review

  • Conference paper
  • First Online:
Ubiquitous Computing and Ambient Intelligence (UCAmI 2016)

Abstract

Three-Dimensional (3D) technologies emerged from the technological advances in manufacturing required to produce physical versions of digital models. The most attractive feature of 3D technologies is that virtual models are easy to mold, and custom-made items can be physically produced. Health domains are areas in which 3D technologies have been applied, and several studies have been conducted assessing the usefulness of such technologies in those domains. In this paper we present the results of a Systematic Literature Review (SLR) on the applications of 3D technologies in the health domain. Discussion from the revision of 33 papers is presented. The main finding of this SLR is that none of the available research papers are focused on computer science related areas (i.e., all papers are published by doctors or researchers in Medicine). Moreover, all the included papers were published in journals specialized in Medicine. Therefore, they do not delve in the computational conclusions of the studies. In this article, we identified significant research gaps (from the computational perspective), as well as new ideas are being proposed on the future of 3D technologies in health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://accessmedicine.mhmedical.com/.

  2. 2.

    http://dl.acm.org/.

  3. 3.

    http://ieeexplore.ieee.org/.

  4. 4.

    http://link.springer.com/.

References

  1. Quijano Blanco, Y., Rodríguez, M.F.C., Peralta R.K., Cortés C.S.: Polyester resin bone replica, as didactic tool for anatomy learning. Rev. U.D.C.A Actual. Divulg. Científica. 15(2), 275–281 (2012)

    Google Scholar 

  2. Malik, H.H., Darwood, A.R.J., Shaunak, S., Kulatilake, P., El-Hilly, A.A., Mulki, O., Baskaradas, A.: Three-dimensional printing in surgery: a review of current surgical applications. J. Surg. Res. 199, 512–522 (2015)

    Article  Google Scholar 

  3. AlAli, A.B., Griffin, M.F., Butler, P.E.: Three-dimensional printing surgical applications. Eplasty 15, e37 (2015)

    Google Scholar 

  4. Martelli, N., Serrano, C., Van Den Brink, H., Pineau, J., Prognon, P., Borget, I., El Batti, S.: Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surg. (United States) 159, 1485–1500 (2016)

    Google Scholar 

  5. Vakharia, V.N., Vakharia, N.N., Hill, C.S.: Review of 3-dimensional printing on cranial neurosurgery simulation training. World Neurosurg. 88, 188–198 (2016)

    Article  Google Scholar 

  6. Marro, A., Bandukwala, T., Mak, W.: Three-dimensional printing and medical imaging: a review of the methods and applications. Curr. Probl. Diagn. Radiol. 45, 2–9 (2016)

    Article  Google Scholar 

  7. Banoriya, D., Purohit, R., Dwivedi, R.K.: Modern trends in rapid prototyping for biomedical applications. Mater. Today Proc. 2, 3409–3418 (2015)

    Article  Google Scholar 

  8. Vázquez, P.P., Götzelmann, T., Hartmann, K., Nürnberger, A., Vázquez, P.P., Tzelmann, G.T., Hartmann, K., Rnberger, A.: An interactive 3D framework for anatomical education. Int. J. Comput. Assist. Radiol. Surg. 3, 511–524 (2008)

    Article  Google Scholar 

  9. Seitel, M., Maier-Hein, L., Seitel, A., Franz, A.M., Kenngott, H., De Simone, R., Wolf, I., Meinzer, H.P.: RepliExplore: Coupling physical and virtual anatomy models. Int. J. Comput. Assist. Radiol. Surg. 4, 417–424 (2009)

    Article  Google Scholar 

  10. Bustamante, S., Bose, S., Bishop, P., Klatte, R., Norris, F.: Novel application of rapid prototyping for simulation of bronchoscopic anatomy. J. Cardiothorac. Vasc. Anesth. 28, 1122–1125 (2014)

    Article  Google Scholar 

  11. Schrot, J., Pietila, T., Sahu, A.: State of the art: 3D printing for creating compliant patient-specific congenital heart defect models. J. Cardiovasc. Magn. Reson. 16, W19 (2014)

    Article  Google Scholar 

  12. Jardini, A.L., Larosa, M.A., Filho, R.M., Zavaglia, C.A.D.C., Bernardes, L.F., Lambert, C.S., Calderoni, D.R., Kharmandayan, P.: Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J. Cranio-Maxillofacial Surg. 42, 1877–1884 (2014)

    Article  Google Scholar 

  13. Hochman, J.B., Unger, B., Kraut, J., Pisa, J., Hombach-Klonisch, S.: Gesture-controlled interactive three dimensional anatomy: a novel teaching tool in head and neck surgery. J. Otolaryngol. - head neck Surg. 43, 38 (2014)

    Article  Google Scholar 

  14. Waran, V., Narayanan, V., Karuppiah, R., Pancharatnam, D., Chandran, H., Raman, R., Rahman, Z.A.A., Owen, S.L.F., Aziz, T.Z.: Injecting realism in surgical training - Initial simulation experience with custom 3D models. J. Surg. Educ. 71, 193–197 (2014)

    Article  Google Scholar 

  15. Watson, R.A.: A low-cost surgical application of additive fabrication. J. Surg. Educ. 71, 14–17 (2014)

    Article  Google Scholar 

  16. Rubino, P.A., Bottan, J.S., Houssay, A., Salas López, E., Bustamante, J., Chiarullo, M., Lambre, J.: Three-dimensional imaging as a teaching method in anterior circulation aneurysm surgery. World Neurosurg. 82, E467–E474 (2014)

    Article  Google Scholar 

  17. Giannopoulos, A.A., Chepelev, L., Sheikh, A., Wang, A., Dang, W., Akyuz, E., Hong, C., Wake, N., Pietila, T., Dydynski, P.B., Mitsouras, D., Rybicki, F.J.: 3D printed ventricular septal defect patch: a primer for the 2015 Radiological Society of North America (RSNA) hands-on course in 3D printing. 3D Print. Med. 1, 1–20 (2015)

    Article  Google Scholar 

  18. Cai, T., Rybicki, F.J., Giannopoulos, A.A., Schultz, K., Kumamaru, K.K., Liacouras, P., Demehri, S., Shu Small, K.M., Mitsouras, D.: The residual STL volume as a metric to evaluate accuracy and reproducibility of anatomic models for 3D printing: application in the validation of 3D-printable models of maxillofacial bone from reduced radiation dose CT images. 3D Print. Med. 1, 1–19 (2015)

    Article  Google Scholar 

  19. Cohen, J., Reyes, S.A.: Creation of a 3D Printed Temporal Bone Model from Clinical CT Data. Am. J. Otolaryngol. 36, 1–6 (2015)

    Article  Google Scholar 

  20. Wake, N., Chandarana, H., Huang, W.C., Taneja, S.S., Rosenkrantz, A.B.: Application of anatomically accurate, patient-specific 3D printed models from MRI data in urological oncology. Clin. Radiol. 71, 3–7 (2015)

    Google Scholar 

  21. Rose, A.S., Webster, C.E., Harrysson, O.L.A., Formeister, E.J., Rawal, R.B., Iseli, C.E.: Pre-operative simulation of pediatric mastoid surgery with 3D-printed temporal bone models. Int. J. Pediatr. Otorhinolaryngol. 79, 740–744 (2015)

    Article  Google Scholar 

  22. Valverde, I., Gomez, G., Suarez-mejias, C., Hosseinpour, A., Hazekamp, M., Roest, A., Vazquez-jimenez, J.F., El-rassi, I., Uribe, S., Gomez-cia, T.: 3D printed cardiovascular models for surgical planning in complex congenital heart diseases. J. Cardiovasc. Magn. Reson. 17, P196 (2015)

    Article  Google Scholar 

  23. Li, C., Yang, M., Xie, Y., Chen, Z., Wang, C., Bai, Y., Zhu, X., Li, M.: Application of the polystyrene model made by 3-D printing rapid prototyping technology for operation planning in revision lumbar discectomy. J. Orthop. Sci. 20, 475–480 (2015)

    Article  Google Scholar 

  24. Sutradhar, A., Park, J., Carrau, D., Nguyen, T.H., Miller, M.J., Paulino, G.H.: Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method. Med. Biol. Eng. Comput. 54, 1–13 (2015)

    Google Scholar 

  25. Fredieu, J.R., Kerbo, J., Herron, M., Klatte, R., Cooke, M.: Anatomical models: a digital revolution. Med. Sci. Educ. 25, 183–194 (2015)

    Article  Google Scholar 

  26. Mitsopoulou, V., Michailidis, D., Theodorou, E., Isidorou, S., Roussiakis, S., Vasilopoulos, T., Polydoras, S., Kaisarlis, G., Spitas, V., Stathopoulou, E., Provatidis, C., Theodorou, G.: Digitizing, modelling and 3D printing of skeletal digital models of Palaeoloxodon tiliensis (Tilos, Dodecanese, Greece). Quat. Int. 379, 4–13 (2015)

    Article  Google Scholar 

  27. Fasel, J.H.D., Aguiar, D., Kiss-Bodolay, D., Montet, X., Kalangos, A., Stimec, B.V., Ratib, O.: Adapting anatomy teaching to surgical trends: a combination of classical dissection, medical imaging, and 3D-printing technologies. Surg. Radiol. Anat. 38, 361–367 (2016)

    Article  Google Scholar 

  28. Knoedler, M., Feibus, A.H., Lange, A., Maddox, M.M., Ledet, E., Thomas, R., Silberstein, J.L.: Individualized physical 3-dimensional kidney tumor models constructed from 3-dimensional printers result in improved trainee anatomic understanding. Urology 85, 1257–1261 (2015)

    Article  Google Scholar 

  29. Mashiko, T., Otani, K., Kawano, R., Konno, T., Kaneko, N., Ito, Y., Watanabe, E.: Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World Neurosurg. 83, 351–361 (2015)

    Article  Google Scholar 

  30. Ryan, J.R., Chen, T., Nakaji, P., Frakes, D.H., Gonzalez, L.F.: Ventriculostomy simulation using patient-specific ventricular anatomy, 3D printing, and hydrogel casting. World Neurosurg. 84, 1333–1339 (2015)

    Article  Google Scholar 

  31. Wen, G., Cong, Z.X., Liu, K.D., Tang, C., Zhong, C., Li, L., Dai, X.J., Ma, C.: A practical 3D printed simulator for endoscopic endonasal transsphenoidal surgery to improve basic operational skills. Child’s Nerv. Syst. 32, 1–8 (2016)

    Article  Google Scholar 

  32. Rehder, R., Abd-El-Barr, M., Hooten, K., Weinstock, P., Madsen, J.R., Cohen, A.R.: The role of simulation in neurosurgery. Child’s Nerv. Syst. 32, 43–54 (2016)

    Article  Google Scholar 

  33. Singhal, A.J., Shetty, V., Bhagavan, K.R., Ragothaman, A., Shetty, V., Koneru, G., Agarwala, M.: Improved surgery planning using 3-D printing: a case study. Indian J. Surg. 78, 100–104 (2016)

    Article  Google Scholar 

  34. Zheng, Y.-X., Yu, D.-F., Zhao, J.-G., Wu, Y.-L., Zheng, B.: 3D printout models vs. 3D-rendered images: which is better for preoperative planning? J. Surg. Educ. 73, 518–523 (2016)

    Article  Google Scholar 

  35. Kong, X., Nie, L., Zhang, H., Wang, Z., Ye, Q., Tang, L., Li, J., Huang, W.: Do three-dimensional visualization and three-dimensional printing improve hepatic segment anatomy teaching? a randomized controlled study. J. Surg. Educ. 73, 264–269 (2016)

    Article  Google Scholar 

  36. Pietrabissa, A., Marconi, S., Peri, A., Pugliese, L., Cavazzi, E., Vinci, A., Botti, M., Auricchio, F.: From CT scanning to 3-D printing technology for the preoperative planning in laparoscopic splenectomy. Surg. Endosc. 30, 366–371 (2016)

    Article  Google Scholar 

  37. Krauel, L., Fenollosa, F., Riaza, L., Pérez, M., Tarrado, X., Morales, A., Gomà, J., Mora, J.: Use of 3D prototypes for complex surgical oncologic cases. World J. Surg. 40, 889–894 (2016)

    Article  Google Scholar 

  38. Bernhard, J.C., Isotani, S., Matsugasumi, T., Duddalwar, V., Hung, A.J., Suer, E., Baco, E., Satkunasivam, R., Djaladat, H., Metcalfe, C., Hu, B., Wong, K., Park, D., Nguyen, M., Hwang, D., Bazargani, S.T., de Castro Abreu, A.L., Aron, M., Ukimura, O., Gill, I.S.: Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J. Urol. 34, 337–345 (2016)

    Article  Google Scholar 

  39. Ploch, C.C., Mansi, C.S.S.A., Jayamohan, J., Kuhl, E.: Using 3D printing to create personalized brain models for neurosurgical training and preoperative planning. World Neurosurg. 91, 1–7 (2016)

    Article  Google Scholar 

  40. Ryan, J.R., Almefty, K.K., Nakaji, P., Frakes, D.H.: Cerebral aneurysm clipping surgery simulation using patient-specific 3d printing and silicone casting. World Neurosurg. 88, 175–181 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This project was partially funded by VINV at UCR. Grant No. 834-B6-076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ávila, C. et al. (2016). Use of Emerging 3D Printing and Modeling Technologies in the Health Domain. In: García, C., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds) Ubiquitous Computing and Ambient Intelligence. UCAmI 2016. Lecture Notes in Computer Science(), vol 10069. Springer, Cham. https://doi.org/10.1007/978-3-319-48746-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48746-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48745-8

  • Online ISBN: 978-3-319-48746-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics