Skip to main content

Adaptive Synchronized Formation Control Considering Communication Constraints

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 14 (IAS 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 531))

Included in the following conference series:

Abstract

The adaptive synchronized formation control problem of multiple mobile robots is studied in this paper. The communication constraints, including time-varying delays and data sampling, are considered in problem formulation and system design. Furthermore, the parameter uncertainties in system dynamics have also been taken into account and an adaptive formation controller is presented which enables the robot network to achieve the synchronized formation task adaptively. Convergence analyses of the proposed method are presented and several useful properties are provided. Simulation results validate the effectiveness of the proposed adaptive synchronized formation control approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Trans. Robot. 21(3), 376–386 (2005)

    Article  Google Scholar 

  2. Lavaei, J., Momeni, A., Aghdam, A.G.: A model predictive decentralized control scheme with reduced communication requirement for spacecraft formation. IEEE Trans. Control Syst. Technol. 16(2), 268–278 (2008)

    Article  Google Scholar 

  3. Lawton, J.R.T., Beard, R.W., Young, B.J.: A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 19(6), 933–941 (2003)

    Article  Google Scholar 

  4. Ahmad, S., Feng, Z., Hu, G.Q.: Multi-robot formation control using distributed null space behavioral approach. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3607–3612. IEEE (2014)

    Google Scholar 

  5. Beard, R.W., Lawton, J., Hadaegh, F.Y., et al.: A coordination architecture for spacecraft formation control. IEEE Trans. Control Syst. Technol. 9(6), 777–790 (2001)

    Article  Google Scholar 

  6. Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive formation tracking control of electrically driven multiple mobile robots. IET Control Theory Appl. 4(8), 1489–1500 (2010)

    Article  Google Scholar 

  7. Panagou, D., Kumar, V.: Cooperative visibility maintenance for leader-follower formations in obstacle environments. IEEE Trans. Rob. 30(4), 831–844 (2014)

    Article  Google Scholar 

  8. Takahashi, H., Nishi, H., Ohnishi, K.: Autonomous decentralized control for formation of multiple mobile robots considering ability of robot. IEEE Trans. Industr. Electron. 51(6), 1272–1279 (2004)

    Article  Google Scholar 

  9. Sun, D., Wang, C., Shang, W., Feng, G.: A synchronization approach to trajectory tracking of multiple mobile robots while maintaining time-varying formations. IEEE Trans. Rob. 25(5), 1074–1086 (2009)

    Article  Google Scholar 

  10. Zhao, D.Y., Zou, T.: A finite-time approach to formation control of multiple mobile robots with terminal sliding mode. Int. J. Syst. Sci. 43(11), 1998–2014 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chung, S.J., Slotine, J.J.: Cooperative robot control and concurrent synchronization of lagrangian systems. IEEE Trans. Rob. 25(3), 686–700 (2009)

    Article  Google Scholar 

  12. Liu, Z., Chen, W.D., Lu, J.G., Wang, H.S., Wang, J.C.: Formation control of mobile robots using distributed controller with sampled-data and communication delays. IEEE Trans. Control Syst. Technol. 24(6), 2125–2132 (2016)

    Google Scholar 

  13. Cheah, C.C., Hou, S.P., Slotine, J.J.E.: Region-based shape control for a swarm of robots. Automatica 45(10), 2406–2411 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lu, J.G., Hill, D.J.: Global asymptotical synchronization of chaotic lur’e systems using sampled data: a linear matrix inequality approach. IEEE Trans. Circuits Syst. II Express Briefs 55(6), 586–590 (2008)

    Article  Google Scholar 

  15. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. SIAM 15 (1994)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the China Domestic Research Project for the International Thermonuclear Experimental Reactor (ITER) under Grant 2012GB102001, the Natural Science Foundation of China under Grants 61175088, 61221003 and 61573243.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe Liu or Weidong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liu, Z., Chen, W., Lu, J., Wang, J., Wang, H. (2017). Adaptive Synchronized Formation Control Considering Communication Constraints. In: Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H. (eds) Intelligent Autonomous Systems 14. IAS 2016. Advances in Intelligent Systems and Computing, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-319-48036-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48036-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48035-0

  • Online ISBN: 978-3-319-48036-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics