Skip to main content

The Coordination Dynamics of Observational Learning: Relative Motion Direction and Relative Phase as Informational Content Linking Action-Perception to Action-Production

  • Chapter
  • First Online:
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 957))

Abstract

The primary goal of this chapter is to merge together the visual perception perspective of observational learning and the coordination dynamics theory of pattern formation in perception and action. Emphasis is placed on identifying movement features that constrain and inform action-perception and action-production processes. Two sources of visual information are examined, relative motion direction and relative phase. The visual perception perspective states that the topological features of relative motion between limbs and joints remains invariant across an actor’s motion and therefore are available for pickup by an observer. Relative phase has been put forth as an informational variable that links perception to action within the coordination dynamics theory. A primary assumption of the coordination dynamics approach is that environmental information is meaningful only in terms of the behavior it modifies. Across a series of single limb tasks and bimanual tasks it is shown that the relative motion and relative phase between limbs and joints is picked up through visual processes and supports observational learning of motor skills. Moreover, internal estimations of motor skill proficiency and competency are linked to the informational content found in relative motion and relative phase. Thus, the chapter links action to perception and vice versa and also links cognitive evaluations to the coordination dynamics that support action-perception and action-production processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The transfer results reported here are unpublished. The manuscript by Buchanan and Wright (2011) focused on relative phase performance across the transfer tasks.

References

  • Al-Abood SA, Davids K, Bennett SJ, Ashford D, Marin MM (2001) Effects of manipulating relative and absolute motion information during observational learning of an aiming task. J Sports Sci 19:507–520

    Article  CAS  PubMed  Google Scholar 

  • Bandura A (1977) Social learning theory. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Bandura A (1986) Social foundations of thought and action: a social cognitive theory. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Bingham GP, Schmidt RC, Zaal FTJM (1999) Visual perception of the relative phasing of human limb movements. Percept Psychophys 61:246–258

    Article  CAS  PubMed  Google Scholar 

  • Bingham GP, Zaal FTJM, Shull JA, Collins DR (2001) The effect of frequency on the visual perception of relative phase and phase variability of two oscillating objects. Exp Brain Res 136:543–552. doi:10.1007/s002210000610

    Article  CAS  PubMed  Google Scholar 

  • Bourguignon M, De Tiege X, de Beeck MO, Van Bogaert P, Goldman S, Jousmaki V, Hari R (2013) Primary motor cortex and cerebellum are coupled with the kinematics of observed hand movements. Neuroimage 66:500–507. doi:10.1016/j.neuroimage.2012.10.038

    Article  PubMed  Google Scholar 

  • Breslin G, Hodges NJ, Williams AM, Curran W, Kremer J (2005) Modelling relative motion to facilitate intra-limb coordination. Hum Mov Sci 24:446–463

    Article  PubMed  Google Scholar 

  • Breslin G, Hodges NJ, Williams AM, Kremer J, Curran W (2006) A comparison of intra- and inter-limb relative motion information in modeling a novel motor skill. Hum Mov Sci 25:753–766

    Article  PubMed  Google Scholar 

  • Buccino G, Vogt S, Ritzl A, Fink GR, Zilles K, Freund H-J, Rizzolatti G (2004) Neural circuits underlying imitation learning of hand actions: an event-related fMRI study

    Google Scholar 

  • Buchanan JJ (2015) Perceptual estimates of motor skill proficiency are constrained by the stability of coordination patterns. J Mot Behav 47:453–464. doi:10.1080/00222895.2015.1008687

    Article  PubMed  Google Scholar 

  • Buchanan JJ, Dean N (2010) Specificity in practice benefits learning in novice models and variability in demonstration benefits observational practice. Psychol Res 74:313–320

    Article  PubMed  Google Scholar 

  • Buchanan JJ, Dean N (2014) Consistently modeling the same movement strategy is more important than model skill level in observational learning contexts. Acta Psychol 146:19–27

    Article  Google Scholar 

  • Buchanan JJ, Kelso JAS, de Guzman GD (1997) Self-organization of trajectory information I. Experimental evidence. Biol Cybern 76:257–273

    Article  CAS  PubMed  Google Scholar 

  • Buchanan JJ, Park I (in press) Observation and physical practice: different practice contexts lead to similar outcomes for the acquisition of kinematic information. Psychol Res. doi:10.1007/s00426-015-0723-4

    Google Scholar 

  • Buchanan JJ, Ramos J, Robson N (2015) The perception-action dynamics of action competency are altered by both physical and observational training. Exp Brain Res 233:1289–1305. doi:10.1007/s00221-015-4207-y

    Article  PubMed  Google Scholar 

  • Buchanan JJ, Ryu YU, Zihlman K, Wright DA (2008) Observational practice of a relative phase pattern but not an amplitude ratio in a multijoint task. Exp Brain Res 191:157–169

    Article  PubMed  Google Scholar 

  • Buchanan JJ, Wright DA (2011) Generalization of action knowledge following observational learning. Acta Psychol 136

    Google Scholar 

  • Byblow WD, Summers JJ, Semjen A, Wuyts IJ, Carson RG (1999) Spontaneous and intentional pattern switching in a multisegmental bimanual coordination task. Mot Cont 3:372–393

    Article  CAS  Google Scholar 

  • Calvo-Merino B, Ehrenberg S, Leung D, Haggard P (2010) Experts see it all: configural effects in action observation. Psychol Res-Psychol Forsch 74:400–406. doi:10.1007/s00426-009-0262-y

    Article  Google Scholar 

  • Calvo-Merino B, Glaser DE, Grezes RE, Passingham RE, Haggard P (2005) Action observation and acquired motor skills: an fMRI study with expert dancers. Cereb Cortex 15:1243–1249

    Article  CAS  PubMed  Google Scholar 

  • Calvo-Merino B, Grezes J, Glaser DE, Passingham RE, Haggard P (2006) Seeing or doing? Influence of visual and motor familiarity in action observation. Curr Biol 16:1905–1910. doi:10.1016/j.cub.2006.07.065

    Article  CAS  PubMed  Google Scholar 

  • Carroll WR, Bandura A (1982) The role of visual monitoring in observational learning of action patterns: making the unobservable observable. J Mot Behav 14:153–167

    Article  CAS  PubMed  Google Scholar 

  • Carroll WR, Bandura A (1985) Role of timing of visual monitoring and motor rehearsal in observational learning of action patterns. J Mot Behav 17:269–281

    Article  CAS  PubMed  Google Scholar 

  • Carroll WR, Bandura A (1990) Representational guidance of action production in observational-learning—a causal-analysis. J Mot Behav 22:85–97

    Article  CAS  PubMed  Google Scholar 

  • Carson RG, Thomas J, Summers JJ, Walters MR, Semjen A (1997) The dynamics of bimanual circle drawing. Q J Exp Psychol 50A:664–683

    Article  Google Scholar 

  • Cattaneo L, Rizzolatti G (2009) The mirror neuron system. Neurol Rev 66:557–560

    Google Scholar 

  • Cross ES, Hamilton A, Grafton ST (2006) Building a motor simulation de novo: observation of dance by dancers. Neuroimage 31:1257–1267. doi:10.1016/j.neuroimage.2006.01.033

    Article  PubMed  PubMed Central  Google Scholar 

  • Cross ES, Kraemer DJM, Hamilton AFd, Kelley WM, Grafton ST (2009) Sensitivity of the action observation network to physical and observational learning. Cereb Cortex 19:315–326

    Article  PubMed  Google Scholar 

  • Cross ES, Liepelt R, Hamilton AFD, Parkinson J, Ramsey R, Stadler W, Prinz W (2012) Robotic movement preferentially engages the action observation network. Hum Brain Mapp 33:2238–2254. doi:10.1002/hbm.21361

    Article  PubMed  Google Scholar 

  • Cutting JE, Proffitt DR (1982) The minimum principle and the perception of absolute, common, and relative motions. Cogn Psychol 14:211–246

    Article  CAS  PubMed  Google Scholar 

  • Cutting JE, Proffitt DR, Kozlowski LT (1978) A biomechanical invariant for gait perception. J Exp Psychol Hum Percept Perform 4:357–372

    Article  CAS  PubMed  Google Scholar 

  • de Guzman GC, Kelso JAS, Buchanan JJ (1997) Self-organization of trajectory formation II. Theoretical model. Biolobical Cybern 76:275–284

    Article  Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Haken H (1983) Synergetics. Springer, Berlin

    Book  Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51:347–356

    Article  CAS  PubMed  Google Scholar 

  • Hommel B (2004) Event files: feature binding in and across perception and action. Trends Cogn Sci 8:494–500. doi:10.1016/j.tics.2004.08.007

    Article  PubMed  Google Scholar 

  • Hommel B, Musseler J, Aschersleben G, Prinz W (2001) The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci 24:849–878. doi:10.1017/s0140525x01000103

    Google Scholar 

  • Johansson G (1973) Visual perception of biological motion and a model for its analysis. Percept Psychophys 14:201–211

    Article  Google Scholar 

  • Johansson G (1976) Spatio-temporal differentiation and integration in visual motion perception. Psychol Res 38:27–63

    Article  Google Scholar 

  • Kelso JAS (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol 246:1000–1004

    Google Scholar 

  • Kelso JAS (1994) The informational character of self-organized coordination dynamics. Hum Mov Sci 13:393–413

    Article  Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behavior. The MIT Press, Cambridge

    Google Scholar 

  • Kelso JAS, Buchanan JJ, Wallace SA (1991) Order parameters for the neural organization of single limb, multijoint movement patterns. Exp Brain Res 85:432–445

    Article  CAS  PubMed  Google Scholar 

  • Kelso JAS, Holt KG, Kugler PN, Turvey MT (1980) On the concept of coordinative structures as dissipative structures: II. Emperical lines of convergence. In: Stelmach GE, Requin EJ (eds) Tutorials in motor behavior. North-Holland Publishing Company, pp 49–70

    Google Scholar 

  • Kelso JAS, Pandya AS (1991) Dynamic pattern generation and recognition. In: Badler NI, Barsky BA, Zeltzer D (eds) Making them move: mechanics, control, and animation of articulated figures. Morgan Kaufmann, San Mateo, pp 171–190

    Google Scholar 

  • Kelso JAS, Scholz JP, Schoner G (1986) Nonequilibrium phase-transitions in coordinated biological motion—critical fluctuations. Phys Lett A 118:279–284. doi:10.1016/0375-9601(86)90359-2

    Article  Google Scholar 

  • Kovacs AJ, Shea CH (2011) The learning of 90o continuous relative phase with and without Lissajous feedback: external and internally generated bimanual coordination. Acta Psychol 136:311–320

    Article  Google Scholar 

  • Kugler PN, Kelso JAS, Turvey MT, Stelmach GE, Requin J (1980) On the concept of coordinative structure as dissipative structures: I. Theoretical lines of convergence. In: Tutorials in motor behavior. North-Holland, New York, pp 1–47

    Google Scholar 

  • Kugler PN, Turvey MT (1987) Information, natural law, and the self-assembly of rhythmic movement. Erlbaum, Hillsdale

    Google Scholar 

  • Maslovat D, Hodges NJ, Krigolson OE, Handy TC (2010) Observational practice benefits are limited to perceptual improvements in the acquisition of a novel coordination skill. Exp Brain Res 204:119–130. doi:10.1007/s00221-010-2302-7

    Article  PubMed  Google Scholar 

  • McAleer P, Pollick FE, Love SA, Crabbe F, Zacks JM (2014) The role of kinematics in cortical regions for continuous human motion perception. Cognit Affect Behav Neurosci 14:307–318. doi:10.3758/s13415-013-0192-4

    Article  Google Scholar 

  • Orlov T, Porat Y, Makin TR, Zohary E (2014) Hands in motion: an upper-limb-selective area in the occipitotemporal cortex shows sensitivity to viewed hand kinematics. J Neurosci 34:4882–4895. doi:10.1523/jneurosci.3352-13.2014

    Article  CAS  PubMed  Google Scholar 

  • Prigogine I, Stengers I (1984) Order out of chaos: man’s new dialogue with nature. Bantam Books, New York

    Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  CAS  PubMed  Google Scholar 

  • Schöner G, Haken H, Kelso JAS (1986) A stochastic theory of phase transitions in human hand movement. Biol Cybern 53:247–257

    Article  PubMed  Google Scholar 

  • Schöner G, Kelso JAS (1988a) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–1520

    Article  PubMed  Google Scholar 

  • Schöner G, Kelso JAS (1988b) A synergetic theory of environmentally-specified and learned patterns of movement coordination. 2 component oscillator dynamics. Biol Cybern 58:81–89. doi:10.1007/bf00364154

    Article  PubMed  Google Scholar 

  • Schöner G, Zanone PG, Kelso JAS (1992) Learning as change of coordination dynamics: theory and experiment. J Mot Behav 24:29–48

    Article  PubMed  Google Scholar 

  • Scully DM (1986) Visual perception of technical execution and aesthetic quality in biological motion. Hum Mov Sci 5:185–206

    Article  Google Scholar 

  • Scully DM, Carnegie E (1998) Observational learning in motor skill acquisition: a look at demonstrations. Irish J Psychol 19:472–485

    Article  Google Scholar 

  • Scully DM, Newell KM (1985) Observational learning and the acquisition of motor skills: toward a visual perception perspective. J Hum Mov Stud 11:169–186

    Google Scholar 

  • Turvey MT (1990) Coordination. Amer Psychol 45:938–953

    Article  CAS  Google Scholar 

  • Wilson AD, Bingham GP (2008) Identifying the information for the visual perception of relative phase. Percept Psychophys 70:465–476. doi:10.3758/PP.70.3.465

    Article  PubMed  Google Scholar 

  • Wilson AD, Bingham GP, Craig JC (2003) Proprioceptive perception of phase variability. J Exp Psychol Hum Percept Perform 29:1179–1190

    Article  PubMed  Google Scholar 

  • Wilson AD, Collins DR, Bingham GP (2005) Human movement coordination implicates relative direction as the information for relative phase. Exp Brain Res 165:351–361

    Article  PubMed  Google Scholar 

  • Zaal FTJM, Bingham GP, Schmidt RC (2000) Visual perception of mean relative phase and phase variability. J Exp Psychol Hum Percept Perform 26:1209–1220

    Article  CAS  PubMed  Google Scholar 

  • Zanone PG, Kelso JAS (1992) The evolution of behavioral attractors with learning: nonequilibrium phase transitions. J Exp Psychol Hum Percept Perform 18:403–421

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Buchanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Buchanan, J.J. (2016). The Coordination Dynamics of Observational Learning: Relative Motion Direction and Relative Phase as Informational Content Linking Action-Perception to Action-Production. In: Laczko, J., Latash, M. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 957. Springer, Cham. https://doi.org/10.1007/978-3-319-47313-0_12

Download citation

Publish with us

Policies and ethics