Skip to main content

Fabrication and Application of Low Cost Flexible Film-Based Sensors to Environmental and Biomedical Monitoring Scenarios

  • Conference paper
  • First Online:
Internet of Things. IoT Infrastructures (IoT360 2015)

Abstract

The paper describes the development of flexible lightweight highly sensitive film-based sensors capable of monitoring pressure, deformation, temperature and humidity. In particular, we present a family of the developed simple devices that successfully adopted polycarbonate films covered with organic molecular conductors as conductive sensing components. Proof-of-concept experiments with these prototypes demonstrate that such bi layer films are promising as sensing devices for the environment and biomedical monitoring. Besides, we present the interfacing of the flexible film-based sensor with a wireless sensor node and evaluate the sensing capability of this system in a real monitoring scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lorussi, F., Rocchia, W., Scilingo, E.P., Tognetti, A., De Rossi, D.: Wearable, redundant fabric-based sensor arrays for reconstruction of body segment posture. IEEE Sens. J. 4, 807–818 (2004)

    Article  Google Scholar 

  2. Stoppa, M., Chiolerio, A.: Sensors wearable electronics and smart textiles: a critical review. Sensors 14, 11957–11992 (2014)

    Article  Google Scholar 

  3. Lumelsky, V.J., Shur, M.S., Wagner, S.: Sensitive skin. IEEE Sens. J. 1, 41–51 (2001)

    Article  Google Scholar 

  4. Dyo, V., Ellwood, S.A., Macdonald, D.W., Markham, A., Trigoni, N., Wohlers, R., Mascolo, C., Pásztor, B., Scellato, S., Yousef, K.: WILDSENSING: design and deployment of a sustainable sensor network for wildlife monitoring. ACM Trans. Sens. Netw. 8(4), 1–33 (2012). Article 29

    Article  Google Scholar 

  5. Somov, A., Spirjakin, D., Ivanov, M., Khromushin, I., Passerone, R., Baranov, A., Savkin, A.: Combustible gases and early fire detection: an autonomous system for wireless sensor networks. In: Proceeding of e-Energy, pp. 85–93 (2010)

    Google Scholar 

  6. Doolin, D.M., Sitar, N.: Wireless sensors for wildfire monitoring. In: Proceedings of Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, CA, USA, vol. 5765 (2005)

    Google Scholar 

  7. Segura-Garcia, J., Felici-Castell, S., Perez-Solano, J.J., Cobos, M., Navarro, J.M.: Low-cost alternatives for urban noise nuisance monitoring using wireless sensor networks. IEEE Sens. J. 15, 836–844 (2015)

    Article  Google Scholar 

  8. Dutta, T.: Medical data compression and transmission in wireless ad hoc networks. J. IEEE Sens. 15, 778–786 (2015)

    Article  Google Scholar 

  9. Mittal, K.L.: Preface in Metallized Plastics 7: Fundamental and Applied Aspects, p. vii. VSP BV, Utrecht (2001). Mittal, K.L. (ed.)

    Google Scholar 

  10. Huang, C.-C., Kao, Z.-K., Liao, Y.-C.: Flexible miniaturized nickel oxide thermistor arrays via inkjet printing technology. ACS Appl. Mater. Interfaces 5(24), 12954–12959 (2013)

    Article  Google Scholar 

  11. Waltman, R.J., Bargon, J.: Electrically conducting polymers: a review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology. Can. J. Chem. 64, 76–95 (1986)

    Article  Google Scholar 

  12. Mahadeva, S.K., Yun, S., Jaehwan, K.: Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite. Sens. Actuators A: Phys. 165(2), 194–199 (2011)

    Article  Google Scholar 

  13. Cardoso, M.J.R., Lima, M., Lenz, D.M.: Polyaniline synthesized with functionalized sulfonic acids for blends manufacture. Mater. Res. 10(4), 425–429 (2007)

    Article  Google Scholar 

  14. Shibaeva, R.P., Yagubskii, E.B.: Molecular conductors and superconductors based on trihalides of BEDT-TTF and some of its analogues. Chem. Rev. 104, 5347–5378 (2004)

    Article  Google Scholar 

  15. Saito, G.: Chap. 10. In: Jones, W. (ed.) Organic Molecular Solids. CRC, Boca Raton (1997)

    Google Scholar 

  16. Laukhina, E., Rovira, C., Ulanski, J.: Organic metals as active components in surface conducting semitransparent films. Synth. Met. 21, 1407–1408 (2001)

    Article  Google Scholar 

  17. Laukhina, E., Ulanski, J., Khomenko, A., Pesotskii, S., Tkacheva, V., Atovmyan, L., Yagubskii, E., Rovira, C., Veciana, J., Vidal-Gancedo, J., Laukhin, V.: Systematic study of the (ET)2I3 reticulate doped polycarbonate film: structure, ESR, transport properties and superconductivity. J. Phys. I Fr. 7, 1665–1675 (1997)

    Article  Google Scholar 

  18. Laukhina, E., Pfattner, R., Ferreras, L.R., Galli, S., Mas-Torrent, M., Masciocchi, N., Laukhin, V., Rovira, C., Veciana, J.: Ultrasensitive piezoresistive all-organic flexible thin films. Adv. Mater. 22, 977–981 (2010)

    Article  Google Scholar 

  19. Lebedev, V., Laukhina, E., Laukhin, V., Rovira, C., Veciana, J.: Tuning the electronic properties of piezoresistive bilayer films based on alpha-(BEDT-TTF)2I3. Eur. J. Inorg. Chem. 2014, 3927–3932 (2014).

    Article  Google Scholar 

  20. Laukhina, E., Tkacheva, V., Khasanov, S., Zorina, L., Gomez-Segura, J., Perezdel Pino, A., Veciana, J., Laukhin, V., Rovira, C.: Linked crystallites in the conducting topmost layer of polymer bilayer films controlled by temperature: from micro- to nanocrystallites. ChemPhysChem 7, 920–923 (2006)

    Article  Google Scholar 

  21. PT-100 Series Platinum RTDs. http://www.lakeshore.com/Documents/LSTC_Platinum_l.pdf

  22. Lebedev, V., Laukhina, E., Rovira, C., Laukhin, V., Veciana, J.: All-organic humidity sensing films with electrical detection principle suitable to biomedical applications. Procedia Eng. 47, 603–606 (2012)

    Article  Google Scholar 

  23. Maurice, D.M.: A recording tonometer. Brit. J. Ophthal 42, 321–335 (1958)

    Article  Google Scholar 

  24. Svedbergh, B., Bäcklund, Y., Hök, B., Rosengren, L.: The IOP-IOL: a probe into the eye. Acta Ophthalmol. 70(2), 266–268 (1992)

    Article  Google Scholar 

  25. Leonardi, M., Pitchon, E.M., Bertsch, A., Renaud, P., Mermoud, A.: Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmol. 87, 433–437 (2009)

    Article  Google Scholar 

  26. Laukhin, V., Lebedev, V., Laukhina, E., Martin, R., Pastor, J.C., Villa, R., Aguilo, J., Rovira, C., Veciana, J.: Hybrid contact lens capable of intraocular pressure monitoring in noninvasive way. In: Solid-State Sensors, Actuators and Microsystems (Transducers and Eurosensors XXVII), pp. 1871–1874 (2013)

    Google Scholar 

  27. http://ocean.stanford.edu/courses/bomc/chem/lecture_03.pdf

  28. Somov, A., Ho, C.C., Passerone, R., Evans, J.W., Wright, P.K.: Towards extending sensor node lifetime with printed supercapacitors. In: Picco, G.P., Heinzelman, W. (eds.) EWSN 2012. LNCS, vol. 7158, pp. 212–227. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  29. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of Things: vision, applications and research challenges. Ad Hoc Netw. 10, 1497–1516 (2012)

    Article  Google Scholar 

  30. Kelaidonis, D., Somov, A., Foteinos, V., Poulios, G., Stavroulaki, V., Vlacheas, P., Demestichas, P., Baranov, A., Biswas, A.R., Giaffreda, R.: Virtualization and cognitive management of real world objects in the Internet of Things. In: IEEE International Conference on Green Computing and Communications (GreenCom), pp. 187–194. IEEE Press (2012)

    Google Scholar 

  31. Somov, A., Minakov, I., Simalatsar, A., Fontana, G., Passerone, R.: A methodology for power consumption evaluation of wireless sensor networks. In: IEEE Conference on Emerging Technologies and Factory Automation (ETFA 2009), pp. 1–8. IEEE Press (2009)

    Google Scholar 

  32. Somov, A., Baranov, A., Spirjakin, D.: A wireless sensor-actuator system for hazardous gases detection and control. J. Sens. Actuators A: Phys. 210, 157–164 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from Instituto de Salud Carlos III, through “Acciones CIBER.” The Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), an initiative funded by theVINational R&D&I Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos IIIwith assistance from the European Regional Development Fund. The authors also appreciate the financial support through the projects: BE-WELL (CTQ2013–40480-R) granted by DGI (Spain), and GenCat (2014-SGR-17) financed by DGR (Catalunya), the European Commission’s Seventh Framework Programme for Research under contracts FP7-OCEAN-2013-614155, the Ministry of Education and Science of Russian Federation Grant RFMEFI57714X0133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Laukhina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Laukhin, V. et al. (2016). Fabrication and Application of Low Cost Flexible Film-Based Sensors to Environmental and Biomedical Monitoring Scenarios. In: Mandler, B., et al. Internet of Things. IoT Infrastructures. IoT360 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-319-47075-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47075-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47074-0

  • Online ISBN: 978-3-319-47075-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics