Skip to main content

Gene and Genome Sequencing in Conifers: Modern Era

  • Chapter
  • First Online:
The Conifers: Genomes, Variation and Evolution

Abstract

We have defined the period up to the late 1990s as the classical era of the study of conifer genomes (Chap. 2) and everything after that as the modern era. The distinction between these two eras is based largely on the availability of DNA sequences. DNA sequencing of conifer DNA in fact began much earlier. The first report of sequencing of conifer DNA, to our knowledge, was that of Kenny et al. (1988). In this study, Kenny et al. (1988) cloned a small piece of Pinus contorta genomic DNA (gDNA) and sequenced the DNA manually using the chain termination method of Sanger (Sanger et al. 1977). They then compared the DNA sequence and the translated amino acid sequence to other published actin gene sequences. In the decade that followed, there were dozens of similar reports where short pieces of DNA (either from gDNA or complementary DNA (cDNA)) were sequenced and compared to sequence entries in growing databases of DNA sequences. This very early period of DNA sequencing will be covered briefly as it pertains to an understanding of gene structure in conifers (Chap. 5). In this chapter, we will begin in the late 1990s with high-throughput expressed sequence tag (EST) sequencing, the primary technology used to study conifer genomes for the ensuing 15 years or more. Then we will cover gene sequencing using a next-generation sequencing (NGS) technology, called RNA-seq, that began in 2010. Finally, we will summarize the work on full genome sequencing in conifers that began in 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, M. D., & Kelley, J. M. (1991). Complementary DNA sequencing: Expressed sequence tags and human genome project. Science, 252(5013), 1651–1656.

    Article  CAS  Google Scholar 

  • Allona, I., Quinn, M., Shoop, E., Swope, K., Cyr, S. S., Carlis, J., et al. (1998). Analysis of xylem formation in pine by cDNA sequencing. Proceedings of the National Academy of Sciences, 95(16), 9693–9698.

    Article  CAS  Google Scholar 

  • Birol, I., Raymond, A., Jackman, S. D., Pleasance, S., Coope, R., Taylor, G. A., et al. (2013). Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics, 29(12), 1492–1497.

    Article  CAS  Google Scholar 

  • Cairney, J., Zheng, L., Cowels, A., Hsiao, J., Zismann, V., Liu, J., et al. (2006). Expressed sequence tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis. Plant Molecular Biology, 62(4–5), 485–501.

    Article  Google Scholar 

  • Canales, J., Bautista, R., Label, P., Gómez-Maldonado, J., Lesur, I., Fernández-Pozo, N., et al. (2014). De novo assembly of maritime pine transcriptome: Implications for forest breeding and biotechnology. Plant Biotechnology Journal, 12(3), 286–299.

    Article  CAS  Google Scholar 

  • Chen, J., Uebbing, S., Gyllenstrand, N., Lagercrantz, U., Lascoux, M., & Källman, T. (2012a). Sequencing of the needle transcriptome from Norway spruce (Picea abies Karst L.) reveals lower substitution rates, but similar selective constraints in gymnosperms and angiosperms. BMC Genomics, 13(1), 589.

    Article  CAS  Google Scholar 

  • Cronn, R., Liston, A., Parks, M., Gernandt, D. S., Shen, R., & Mockler, T. (2008). Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Research, 36(19), e122.

    Article  Google Scholar 

  • Fernández-Pozo, N., Canales, J., Guerrero-Fernández, D., Villalobos, D. P., Díaz-Moreno, S. M., Bautista, R., et al. (2011). EuroPineDB: A high-coverage web database for maritime pine transcriptome. BMC Genomics, 12(1), 366.

    Article  Google Scholar 

  • Futamura, N., Totoki, Y., Toyoda, A., Igasaki, T., Nanjo, T., Seki, M., et al. (2008). Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili. BMC Genomics, 9(1), 383.

    Article  Google Scholar 

  • González-Ibeas, D., Martinez-García, P. J., Famula, R. A., Delfino-Mix, A., Stevens, K. A., Loopstra, C. A., et al. (2016). Assessing the gene content of the megagenome: Sugar pine (Pinus lambertiana). G3: Genes, Genomes, Genetics, 6(12), 3787–3802.

    Article  Google Scholar 

  • Guo, W., Grewe, F., Cobo-Clark, A., Fan, W., Duan, Z., Adams, R. P., et al. (2014). Predominant and substoichiometric isomers of the plastid genome coexist within Juniperus plants and have shifted multiple times during cupressophyte evolution. Genome Biology and Evolution, 6(3), 580–590.

    Article  Google Scholar 

  • Hall, D. E., Yuen, M. M., Jancsik, S., Quesada, A. L., Dullat, H. K., Li, M., et al. (2013). Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana). BMC Plant Biology, 13(1), 80.

    Article  CAS  Google Scholar 

  • Hirao, T., Watanabe, A., Kurita, M., Kondo, T., & Takata, K. (2008). Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: Diversified genomic structure of coniferous species. BMC Plant Biology, 8(1), 70.

    Article  Google Scholar 

  • Howe, G. T., Yu, J., Knaus, B., Cronn, R., Kolpak, S., Dolan, P., et al. (2013). A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation. BMC Genomics, 14(1), 137.

    Article  CAS  Google Scholar 

  • Hsu, C. Y., Wu, C. S., & Chaw, S. M. (2014). Ancient nuclear plastid DNA in the yew family (Taxaceae). Genome Biology and Evolution, 6(8), 2111–2121.

    Article  Google Scholar 

  • Huang, H. H., Xu, L. L., Tong, Z. K., Lin, E. P., Liu, Q. P., Cheng, L. J., & Zhu, M. Y. (2012a). De novo characterization of the Chinese fir (Cunninghamia lanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis. BMC Genomics, 13(1), 648.

    Article  CAS  Google Scholar 

  • Jackman, S. D., Warren, R. L., Gibb, E. A., Vandervalk, B. P., Mohamadi, H., Chu, J., et al. (2016). Organellar genomes of white spruce (Picea glauca): Assembly and annotation. Genome Biology and Evolution, 8(1), 29–41.

    Article  CAS  Google Scholar 

  • Jermstad, K. D., Bassoni, D. L., Kinlaw, C. S., & Neale, D. B. (1998). Partial DNA sequencing of Douglas-fir cDNAs used for RFLP mapping. Theoretical and Applied Genetics, 97(5–6), 771–776.

    Article  CAS  Google Scholar 

  • Kenny, J. R., Dancik, B. P., Florence, L. Z., & Nargang, F. E. (1988). Nucleotide sequence of the carboxy-terminal portion of a lodgepole pine actin gene. Canadian Journal of Forest Research, 18(12), 1595–1602.

    Article  CAS  Google Scholar 

  • Kinlaw, C. S., Ho, T., Ljungkvist, V., & Baysdorfer, C. (1997). Gene discovery in loblolly pine through cDNA sequencing [abstract]. In D. B. Neale (Ed.), Forest Tree Genome Workshop. Placerville, CA: Institute of Forest Genetics, USDA Forest Service (1997). Abstract nr 4.

    Google Scholar 

  • Kirst, M., Johnson, A. F., Baucom, C., Ulrich, E., Hubbard, K., Staggs, R., et al. (2003). Apparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 100(12), 7383–7388.

    Article  Google Scholar 

  • Kriebel, H. B. (1985). DNA sequence components of the Pinus strobus nuclear genome. Canadian Journal of Forest Research, 15(1), 1–4.

    Article  CAS  Google Scholar 

  • Li, X., Wu, H. X., Dillon, S. K., & Southerton, S. G. (2009a). Generation and analysis of expressed sequence tags from six developing xylem libraries in Pinus radiata D. Don. BMC Genomics, 10(1), 41.

    Article  CAS  Google Scholar 

  • Liang, C., Wang, G., Liu, L., Ji, G., Fang, L., Liu, Y., et al. (2007). ConiferEST: An integrated bioinformatics system for data reprocessing and mining of conifer expressed sequence tags (ESTs). BMC Genomics, 8(1), 134.

    Article  Google Scholar 

  • Liu, J. J., Sturrock, R. N., & Benton, R. (2013a). Transcriptome analysis of Pinus monticola primary needles by RNA-seq provides novel insight into host resistance to Cronartium ribicola. BMC Genomics, 14(1), 884.

    Article  Google Scholar 

  • Lorenz, W. W., Sun, F., Liang, C., Kolychev, D., Wang, H., Zhao, X., et al. (2006). Water stress-responsive genes in loblolly pine (Pinus taeda) roots identified by analyses of expressed sequence tag libraries. Tree Physiology, 26(1), 1–16.

    Article  Google Scholar 

  • Lorenz, W. W., Ayyampalayam, S., Bordeaux, J. M., Howe, G. T., Jermstad, K. D., Neale, D. B., et al. (2012). Conifer DBMagic: A database housing multiple de novo transcriptome assemblies for 12 diverse conifer species. Tree Genetics & Genomes, 8(6), 1477–1485.

    Article  Google Scholar 

  • Mann, I. K., Wegrzyn, J. L., & Rajora, O. P. (2013). Generation, functional annotation and comparative analysis of black spruce (Picea mariana) ESTs: An important conifer genomic resource. BMC Genomics, 14(1), 702.

    Article  CAS  Google Scholar 

  • Müller, T., Ensminger, I., & Schmid, K. J. (2012). A catalogue of putative unique transcripts from Douglas-fir (Pseudotsuga menziesii) based on 454 transcriptome sequencing of genetically diverse, drought stressed seedlings. BMC Genomics, 13(1), 673.

    Article  Google Scholar 

  • Neale, D. B., Wegrzyn, J. L., Stevens, K. A., Zimin, A. V., Puiu, D., Crepeau, M. W., et al. (2014). Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology, 15(3), R59. http://genomebiology.com/2014/15/3/R59.

    Article  Google Scholar 

  • Neale, D. B., McGuire, P. E., Wheeler, N. C., Stevens, K. A., Crepeau, M. W., Cardeno, C., et al. (2017a). The Douglas-fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae. G3: Genes, Genomes, Genetics, 7(9), 3157–3167.

    Article  CAS  Google Scholar 

  • Neale, D. B., Martínez-García, P. J., De La Torre, A. R., Montanari, S., & Wei, X. X. (2017b). Tree genome sequencing: Novel insights into plant biology. Annual Review of Plant Biology, 68(1), 457–483.

    Article  CAS  Google Scholar 

  • Niu, S. H., Li, Z. X., Yuan, H. W., Chen, X. Y., Li, Y., & Li, W. (2013). Transcriptome characterization of Pinus tabuliformis and evolution of genes in the Pinus phylogeny. BMC Genomics, 14(1), 263.

    Article  CAS  Google Scholar 

  • Nystedt, B., Street, N. R., Wetterbom, A., Zuccolo, A., Lin, Y. C., Scofield, D. G., et al. (2013). The Norway spruce genome sequence and conifer genome evolution. Nature, 497(7451), 579–584.

    Article  CAS  Google Scholar 

  • Parchman, T. L., Geist, K. S., Grahnen, J. A., Benkman, C. W., & Buerkle, C. A. (2010). Transcriptome sequencing in an ecologically important tree species: Assembly, annotation, and marker discovery. BMC Genomics, 11(1), 180.

    Article  Google Scholar 

  • Pavy, N., Paule, C., Parsons, L., Crow, J. A., Morency, M. J., Cooke, J., et al. (2005). Generation, annotation, analysis and database integration of 16,500 white spruce EST clusters. BMC Genomics, 6(1), 144.

    Article  Google Scholar 

  • Rake, A. V., Miksche, J. P., Hall, R. B., & Hansen, K. M. (1980). DNA reassociation kinetics of four conifers. Canadian Journal of Genetics and Cytology, 22(1), 69–79.

    Article  CAS  Google Scholar 

  • Ralph, S. G., Chun, H. J. E., Kolosova, N., Cooper, D., Oddy, C., Ritland, C. E., et al. (2008). A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis). BMC Genomics, 9(1), 484.

    Article  Google Scholar 

  • Rigault, P., Boyle, B., Lepage, P., Cooke, J. E., Bousquet, J., & MacKay, J. J. (2011). A white spruce gene catalog for conifer genome analyses. Plant Physiology, 157(1), 14–28.

    Article  CAS  Google Scholar 

  • Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463–5467.

    Article  CAS  Google Scholar 

  • Stevens, K. A., Wegrzyn, J. L., Zimin, A., Puiu, D., Crepeau, M., Cardeno, C., et al. (2016). Sequence of the Sugar Pine Megagenome. Genetics, 204(4), 1613–1626.

    Article  CAS  Google Scholar 

  • Tuskan, G. A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., et al. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313(5793), 1596–1604.

    Article  CAS  Google Scholar 

  • Vieira, L. N., Faoro, H., Rogalski, M., de Freitas Fraga, H. P., Cardoso, R. L. A., de Souza, E. M., et al. (2014). The complete chloroplast genome sequence of Podocarpus lambertii: Genome structure, evolutionary aspects, gene content and SSR detection. PLoS One, 9(3), e90618.

    Article  Google Scholar 

  • Wakasugi, T., Tsudzuki, J., Ito, S., Nakashima, K., Tsudzuki, T., & Sugiura, M. (1994). Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proceedings of the National Academy of Sciences, 91(21), 9794–9798.

    Article  CAS  Google Scholar 

  • Warren, R. L., Keeling, C. I., Yuen, M. M. S., Raymond, A., Taylor, G. A., Vandervalk, B. P., et al. (2015). Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. The Plant Journal, 83(2), 189–212.

    Article  CAS  Google Scholar 

  • Wu, C. S., & Chaw, S. M. (2014). Highly rearranged and size-variable chloroplast genomes in conifers II clade (cupressophytes): Evolution towards shorter intergenic spacers. Plant Biotechnology Journal, 12(3), 344–353.

    Article  CAS  Google Scholar 

  • Wu, C. S., & Chaw, S. M. (2016). Large-scale comparative analysis reveals the mechanisms driving plastomic compaction, reduction, and inversions in conifers II (cupressophytes). Genome Biology and Evolution, 8(12), 3740–3750.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Q., Sun, C., Luo, H., Li, Y., Niu, Y., Sun, Y., et al. (2011a). Transcriptome analysis of Taxus cuspidata needles based on 454 pyrosequencing. Planta Medica, 77(04), 394–400.

    Article  CAS  Google Scholar 

  • Wu, C. S., Wang, Y. N., Hsu, C. Y., Lin, C. P., & Chaw, S. M. (2011b). Loss of different inverted repeat copies from the chloroplast genomes of Pinaceae and cupressophytes and influence of heterotachy on the evaluation of gymnosperm phylogeny. Genome Biology and Evolution, 3, 1284–1295.

    Article  CAS  Google Scholar 

  • Yi, X., Gao, L., Wang, B., Su, Y. J., & Wang, T. (2013). The complete chloroplast genome sequence of Cephalotaxus oliveri (Cephalotaxaceae): Evolutionary comparison of Cephalotaxus chloroplast DNAs and insights into the loss of inverted repeat copies in gymnosperms. Genome Biology and Evolution, 5(4), 688–698.

    Article  Google Scholar 

  • Zhang, Y., Ma, J., Yang, B., Li, R., Zhu, W., Sun, L., et al. (2014a). The complete chloroplast genome sequence of Taxus chinensis var. mairei (Taxaceae): Loss of an inverted repeat region and comparative analysis with related species. Gene, 540(2), 201–209.

    Article  CAS  Google Scholar 

  • Zimin, A. V., Stevens, K. A., Crepeau, M. W., Puiu, D., Wegrzyn, J. L., Yorke, J. A., et al. (2017). An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. Gigascience, 6, 1–4.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neale, D.B., Wheeler, N.C. (2019). Gene and Genome Sequencing in Conifers: Modern Era. In: The Conifers: Genomes, Variation and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-319-46807-5_3

Download citation

Publish with us

Policies and ethics