Skip to main content

Bioinformatic Analysis Using Complex Networks and Clustering Proteins Linked with Alzheimer’s Disease

  • Conference paper
  • First Online:
Book cover Advances in Computational Intelligence Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 513))

Abstract

The detection of protein complexes is an important research problem in bioinformatics, which may help increase our understanding of the biological functions of proteins inside our body. Moreover, new discoveries obtained from identification of protein complexes may be considered important for therapeutic purposes. Several proteins linked with Alzheimer’s disease were investigated. By observing the connectivity between proteins using computational methods such as graph theory and clustering, we can uncover previously unknown relationships that are useful for potential knowledge discovery. Furthermore, we demonstrate how Markov Clustering (MCL) and the Molecular Complex Detection (MCODE) algorithm identify interesting patterns from the protein-protein interaction data related to Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aittokallio, T.: Graph-based methods for analysing networks in cell biology. Briefings Bioinform. 7(3), 243–255 (2006)

    Article  Google Scholar 

  2. Alberts, B.: The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92(3), 291–294 (1998)

    Article  Google Scholar 

  3. Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4(1), 2 (2003)

    Article  Google Scholar 

  4. Barabási, A.-L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101–113 (2004)

    Article  Google Scholar 

  5. Boyle, E.I., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J.M., Sherlock, G.: GO::TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics (Oxford, England), 20(18):3710–3715 (2004)

    Google Scholar 

  6. Brohee, S., Van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinform. 7(1), 488 (2006)

    Article  Google Scholar 

  7. Chatr-aryamontri, A., Ceol, A., Palazzi, L.M., Nardelli, G., Schneider, M.V., Castagnoli, L., Cesareni, G.: MINT: the Molecular INTeraction database. Nucleic Acids Res. 35 (Database issue), D572–574 (2007)

    Google Scholar 

  8. Enright, A.J., Van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30(7), 1575–1584 (2002)

    Article  Google Scholar 

  9. Feng, J., Jiang, R., Jiang, T.: A max-flow-based approach to the identification of protein complexes using protein interaction and microarray data. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(3), 621–634 (2011)

    Article  MathSciNet  Google Scholar 

  10. Handl, J.Knowles, Kell, D.B.: Computational cluster validation in post-genomic data analysis. Bioinformatics 21(15), 3201–3212 (2005)

    Article  Google Scholar 

  11. King, A.D., Przulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20(17), 3013–3020 (2004)

    Article  Google Scholar 

  12. Klapa, M.I., Tsafou, K., Theodoridis, E., Tsakalidis, A., Moschonas, N.K.: Reconstruction of the experimentally supported human protein interactome: what can we learn? BMC Syst. Biol. 7(1), 96 (2013)

    Article  Google Scholar 

  13. Kolaczyk, E.D., Csárdi, G.: Statistical Analysis of Network Data with R. Springer, New York (2014)

    Book  MATH  Google Scholar 

  14. Kumar, M., Agrawal, K.K., Arora, D.D., Mishra, R.: Implementation and behavioural analysis of graph clustering using restricted neighborhood search algorithm. Int. J. Comput. Appl. 22(5), 15–20 (2011)

    Google Scholar 

  15. Li, X.-L., Ng, S.-K. (eds.): Biological Data Mining in Protein Interaction (2009)

    Google Scholar 

  16. Li, X., Wu, M., Kwoh, C.-K., Ng, S.-K.: Computational approaches for detecting protein complexes from protein interaction networks: a survey. BMC Genom. 11(Suppl 1), S3 (2010)

    Article  Google Scholar 

  17. McGarry, K., Slater, N., Ammaning, A.: Identifying candidate drugs for repositioning by graph based modeling techniques based on drug side-effects. In: The 15th UK Workshop on Computational Intelligence, UKCI-2015, pp. 1–8 (2015)

    Google Scholar 

  18. Samatova, N.F., Hendrix, W., Jenkins, J., Padmanabhan, K., Chakraborty, A.: Practical Graph Mining with R. CRC Press (2013)

    Google Scholar 

  19. Sheinerman, F.B., Norel, R., Honig, B.: Electrostatic aspects of protein–protein interactions. Curr. Opin. Struct. Biol. 10(2), 153–159 (2000)

    Article  Google Scholar 

  20. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. 100(21), 12123–12128 (2003)

    Article  Google Scholar 

  21. Sprinzak, E., Sattath, S., Margalit, H.: How reliable are experimental protein-protein interaction data? J. Mol. Biol. 327(5), 919–923 (2003)

    Article  Google Scholar 

  22. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., Kuhn, M., Bork, P., Jensen, L.J., von Mering, C.: STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43(D1), D447–D452 (2015)

    Article  Google Scholar 

  23. Watts, D., Strogatz, S.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  24. Wu, M., Li, X.L., Kwoh, C.-K.: Algorithms for detecting protein complexes in PPI networks: an evaluation study. In: Proceedings of Third IAPR International Conference on Pattern Recognition in Bioinformatics (PRIB 2008). pp. 15–17 (2008)

    Google Scholar 

  25. Zhang, X.-F., Dai, D.-Q., Ou-Yang, L., Yan, H.: Detecting overlapping protein complexes based on a generative model with functional and topological properties. BMC Bioinform. 15(1), 186 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken McGarry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rujirapipat, S., McGarry, K., Nelson, D. (2017). Bioinformatic Analysis Using Complex Networks and Clustering Proteins Linked with Alzheimer’s Disease. In: Angelov, P., Gegov, A., Jayne, C., Shen, Q. (eds) Advances in Computational Intelligence Systems. Advances in Intelligent Systems and Computing, vol 513. Springer, Cham. https://doi.org/10.1007/978-3-319-46562-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46562-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46561-6

  • Online ISBN: 978-3-319-46562-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics