Skip to main content

Aeroelasticity of the PrandtlPlane: Body Freedom Flutter, Freeplay, and Limit Cycle Oscillation

  • Chapter
  • First Online:
Variational Analysis and Aerospace Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 116))

Abstract

Aeroelasticity of PrandtlPlane configurations is a yet unexplored field. The overconstrained structural system and the mutual aerodynamic interference of the wings enhance the complexity of the aeroelastic response. In this work the aeroelastic behavior of several models based on wing system of 250-seat PrandtlPlane design is studied. When an aluminum version of the structure is considered, flutter is associated with a coalescence of the first two elastic modes, the first being characterized by a classic upward bending of both wings, and the second one being associated with an out-of-phase bending of the two wings and tilting of the lateral joint. Analyses show that energy is injected in the structure mainly at the tip of the front wing, close to the aileron. Effects of freeplay of mobile surfaces are evaluated, showing how, in some cases, an increase in the flutter speed is observed. When flutter analyses are repeated considering the configuration free to pitch and plunge, flutter speed does increase due to a particular interaction between rigid-body pitching and elastic modes. Several of the above findings are demonstrated on more detailed structural models considering also the local stiffness distribution, and taking also into consideration compressibility effects. When composite materials are employed, flutter issues are completely overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frediani, A., Cipolla, V., Rizzo, E.: The PrandtlPlane configuration: overview on possible applications to civil aviation. In: Buttazzo, G., Frediani, A. (eds.) Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design. Springer Optimization and Its Applications, vol. 66, pp. 179–210. Springer US, New York (2012). doi:10.1007/978-1-4614-2435-2_8

    Chapter  Google Scholar 

  2. Cavallaro, R., Demasi, L.: Challenges, ideas, and innovations of joined-wing configurations: a concept from the past, an opportunity for the future. Prog. Aerosp. Sci. (2016, accepted for publication)

    Google Scholar 

  3. Prandtl, L.: Induced drag of multiplanes. Technical Report TN 182, NACA, March 1924, reproduction of Der induzierte Widerstand von Mehrdeckern. Technische Ber. 3, pp. 309–315 (1918)

    Google Scholar 

  4. Demasi, L., Monegato, G., Dipace, A., Cavallaro, R.: Minimum induced drag theorems for joined wings, closed systems, and generic biwings: theory. J. Optim. Theory Appl. 1–36 (2015)

    Google Scholar 

  5. Frediani, A., Montanari, G.: Best wing system: an exact solution of the Prandtl’s problem. In: Variational Analysis and Aerospace Engineering. Springer Optimization and Its Applications, vol. 33, pp. 183–211. Springer, New York (2009)

    Google Scholar 

  6. Demasi, L., Monegato, G., Cavallaro, R.: Minimum induced drag theorems for multi-wing systems. In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, No. AIAA 2016-0236. AIAA SciTech, San Diego, CA (2016)

    Google Scholar 

  7. Demasi, L., Monegato, G., Cavallaro, R.: Minimum induced drag theorems for nonplanar systems and closed wings. In: Frediani, A. (ed.) Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design. Springer Optimization and Its Applications. Springer US, New York (2016, to appear)

    Google Scholar 

  8. Munk, M.: Isoperimetrische Aufgaben aus der Theorie des Fluges. Dieterichsche Universitäts-Buchdruckerei, Göttingen (1919)

    MATH  Google Scholar 

  9. Munk, M.: The minimum induced drag of aerofoils. Report 121, NASA (1923)

    Google Scholar 

  10. Bernardini, G.: Problematiche aerodinamiche relative alla progettazione di configurazioni innovative. Ph.D. thesis, Politecnico di Milano (1999)

    Google Scholar 

  11. Bernardini, G., Frediani, A., Morino, L.: Aerodynamics for MDO of an innovative configuration. In: Research and Technology Organization, No. RTO Meeting Proceedings 35. RTO AVT Symposium on Aerodynamic Design and Optimisation of Flight Vehicles in a Concurrent Multi-Disciplinary Environment. Symposium of the Applied Vehicle Technology Panel, Ottawa (1999)

    Google Scholar 

  12. Cavallaro, R., Nardini, M., Demasi, L.: Amphibious PrandtlPlane: preliminary design aspects including propellers integration and ground effect. In: 2th SciTech2015, No. AIAA-2015-1185. Kissimmee, FL (2015)

    Google Scholar 

  13. Cavallaro, R., Iannelli, A., Demasi, L., Razón, A.M.: Phenomenology of nonlinear aeroelastic responses of highly deformable joined wings. Adv. Aircr. Spacecr. Sci. 2 (2), 125–168 (2015)

    Article  Google Scholar 

  14. Frediani, A., Gasperini, M., Saporito, G., Rimondi, A.: Development of a PrandtlPlane aircraft configuration. In: XVII Congresso Nazionale AIDAA (17th National Congress AIDAA), Roma, pp. 2089–2104 (2003)

    Google Scholar 

  15. Gagnon, H., Zingg, D.W.: Aerodynamic optimization trade study of a box-wing aircraft configuration. In: AIAA SciTech, 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, No. AIAA2015-0695 (2015)

    Google Scholar 

  16. Gall, P.D., Smith, H.C.: Aerodynamic characteristics of biplanes with winglets. J. Aircr. 24 (8), 518–522 (1987)

    Article  Google Scholar 

  17. Chiocchia., G., Iuso, G., Carrera, E., Frediani, A.: A wind tunnel model of a ULM configuration of Prandt plane: design, manufacturing and aerodynamic testing. In: XVII Congresso Nazionale AIDAA (17th National Congress AIDAA), Rome, pp. 2089–2104 (2003)

    Google Scholar 

  18. Cipolla, V., Frediani, A., Oliviero, F., Gibertini, G.: Ultralight amphibious PrandPrandtl: wind tunnel tests. In: XXII Conference, Italian Association of Aeronautics and Astronautics, Napoli (2013)

    Google Scholar 

  19. Lange, R.H., Cahill, J.F., Bradley, E.S., Eudaily, R.R., Jenness, C.M., Macwilkinson, D.G.: Feasibility study of the transonic biplane concept for transport aircraft applications. NASA CR–132462. Lockheed-Georgia Company, Marietta, GA (1974)

    Google Scholar 

  20. Frediani, A., Rizzo, E., Bottoni, C., Scanu, J., Iezzi, G.: A 250 passenger PrandtlPlane transport aircraft preliminary design. Aerotecnica Missili e Spazio (AIDAA) 84 (2005)

    Google Scholar 

  21. Dal Canto, D., Frediani, A., Ghiringhelli, G.L., Terraneo, M.: The lifting system of a PrandtlPlane, Part 1: design and analysis of a light alloy structural solution. In: Buttazzo, G., Frediani, A. (eds.) Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design. Springer Optimization and Its Applications, vol. 66, pp. 211–234. Springer US, New York (2012). doi:10.1007/978-1-4614-2435-2_9

    Google Scholar 

  22. Voskuijl, M., Klerk, J., Ginneken, D.: Flight mechanics modeling of the PrandtlPlane for conceptual and preliminary design. In: Buttazzo, G., Frediani, A. (eds.) Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design. Springer Optimization and Its Applications, pp. 435–462. Springer US, New York (2012)

    Chapter  Google Scholar 

  23. Dimartino, C., Baldini, M.: Analisi agli elementi finiti di un tronco di fusoliera di un velivolo PrandtlPlane sottoposto a carichi limite di pressurizzazione e di massa. Master’s thesis, Universitä di Pisa (2009)

    Google Scholar 

  24. Bombardieri, R., Cavallaro, R., Demasi, L.: A historical perspective on the aeroelasticity of box wings and PrandtlPlane with new findings. In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, No. AIAA 2016-0238. AIAA SciTech, San Diego, CA (2016)

    Google Scholar 

  25. Dal Canto, D.: Progetto preliminare del cassone alare di un velivolo di tipo Prandtl-Plane mediante l’applicazione di un metodo di ottimizzazione strutturale. Master’s thesis, Dipartimento di Ingegneria Aerospaziale, Universitä di Pisa (2009). Advisor: A. Frediani

    Google Scholar 

  26. Divoux, N., Frediani, A.: The lifting system of a PrandtlPlane, Part 2: Preliminary study on flutter characteristics. In: Buttazzo, G., Frediani, A. (eds.) Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design. Springer Optimization and Its Applications, vol. 66, pp. 235–267. Springer US, New York (2012). doi:10.1007/978-1-4614-2435-2_10

    Google Scholar 

  27. Divoux, N.: Preliminary study on flutter characteristics of a PrandtlPlane aircraft. Master’s thesis, TU Delft (2008)

    Google Scholar 

  28. Cavallaro, R., Bombardieri, R., Demasi, L., Iannelli, A.: PrandtlPlane joined wing: body freedom flutter, limit cycle oscillation and freeplay studies. J. Fluids Struct. 59, 57–84 (2015)

    Article  Google Scholar 

  29. Frediani, A., Quattrone, F., Contini, F.: The lifting system of a PrandtlPlane, Part 3: structures made in composites. In: Buttazzo, G., Frediani, A. (eds.) Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design. Springer Optimization and Its Applications, vol. 66, pp. 269–288. Springer US, New York (2012). doi:10.1007/978-1-4614-2435-2_11

    Google Scholar 

  30. Bombardieri, R.: PrandtlPlane joined wing: body freedom flutter, limit cycle oscillation and freeplay studies. Master’s thesis, Dipartimento di Ingegneria Aerospaziale, Univerisitä di Pisa (2015). Advisors: Aldo Frediani, Luciano Demasi and Rauno Cavallaro

    Google Scholar 

  31. Silvani, S.: Aeroelastic analysis of PrandtlPlane joined wings configuration. Master’s thesis, Universitä degli Studi di Roma 3 (2015)

    Google Scholar 

  32. Rodden, W.P., Johnson, E.H.: User Guide V 68 MSC/NASTRAN Aeroelastic Analysis. MacNeal-Schwendler Corporation, Newport Beach, CA (1994)

    Google Scholar 

  33. Cavallaro, R., Iannelli, A., Demasi, L., Razón, A.M.: Phenomenology of nonlinear aeroelastic responses of highly deformable joined-wings configurations. In: 55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference, No. AIAA 2014-1199. AIAA Science and Technology Forum and Exposition (SciTech2014) National Harbor, MD (2014)

    Google Scholar 

  34. Bottoni, C., Scanu, J.: Preliminary design of a 250 passenger PrandtlPlane aircraft. Master’s thesis, University of Pisa (2004)

    Google Scholar 

  35. Ginneken, D.A.J., Voskuijl, M., Van Tooren, M.J.L., Frediani, A.: Automated control surface design and sizing for the PrandtlPlane. In: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, No. AIAA 2010-3060, Orlando, FL (2010)

    Google Scholar 

  36. Ginneken, D.V.: Automated control surface design and sizing for the PrandtlPlane. Master’s thesis, TU Delft (2009)

    Google Scholar 

  37. Chipman, R., Rauch, F., Rimer, M., Muñiz, B.: Body-freedom flutter of a 1/2 scale forward-swept-wing model, an experimental and analytical Study. Contract Report NASA CR-172324, NASA, Grumman Aerospace Corporation, April 1984

    Google Scholar 

  38. Love, M.H., Zink, P.S., Wieselmann, P.A., Youngren, H.: Body freedom flutter of high aspect ratio flying wings. In: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference, No. AIAA 2005-1947, Austin, TX (2005)

    Google Scholar 

  39. Quattrone, F., Contini, F.: Preliminary design and FEM analysis of a new conception non-standard wing structure: the PrandtlPlane 250 wing structure. Master’s thesis, Dipartimento di Ingegneria Aerospaziale, Universitä di Pisa (2010)

    Google Scholar 

  40. Torenbeek, E.: Synthesis of Subsonic Airplane Design: An Introduction to the Preliminary Design of Subsonic General Aviation and Transport Aircraft, with Emphasis on Layout, Aerodynamic Design, Propulsion and Performance. Springer Netherlands, Dordrecht (1982)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rauno Cavallaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cavallaro, R., Bombardieri, R., Silvani, S., Demasi, L., Bernardini, G. (2016). Aeroelasticity of the PrandtlPlane: Body Freedom Flutter, Freeplay, and Limit Cycle Oscillation. In: Frediani, A., Mohammadi, B., Pironneau, O., Cipolla, V. (eds) Variational Analysis and Aerospace Engineering. Springer Optimization and Its Applications, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-319-45680-5_3

Download citation

Publish with us

Policies and ethics