Skip to main content

Quadric Arrangement in Classifying Rigid Motions of a 3D Digital Image

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9890))

Included in the following conference series:

Abstract

Rigid motions are fundamental operations in image processing. While bijective and isometric in \(\mathbb {R}^3\), they lose these properties when digitized in \(\mathbb {Z}^3\). To understand how the digitization of 3D rigid motions affects the topology and geometry of a chosen image patch, we classify the rigid motions according to their effect on the image patch. This classification can be described by an arrangement of hypersurfaces in the parameter space of 3D rigid motions of dimension six. However, its high dimensionality and the existence of degenerate cases make a direct application of classical techniques, such as cylindrical algebraic decomposition or critical point method, difficult. We show that this problem can be first reduced to computing sample points in an arrangement of quadrics in the 3D parameter space of rotations. Then we recover information about remaining three parameters of translation. We implemented an ad-hoc variant of state-of-the-art algorithms and applied it to an image patch of cardinality 7. This leads to an arrangement of 81 quadrics and we recovered the classification in less than one hour on a machine equipped with 40 cores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our implementation of real algebraic numbers and their comparison can be downloaded from https://github.com/copyme/RigidMotionsMapleTools.

  2. 2.

    Note that this time is affected by a time needed to read a list of sample points (abc) from a hard drive before the main computations.

References

  1. Abbott, J.: Quadratic interval refinement for real roots. Commun. Comput. Algebra 48(1/187), 3–12 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amir, A., Kapah, O., Tsur, D.: Faster two-dimensional pattern matching with rotations. Theoret. Comput. Sci. 368(3), 196–204 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  4. Cayley, A., Forsyth, A.: The Collected Mathematical Papers of Arthur Cayley, vol. 1. The University Press, Cambridge (1898)

    Google Scholar 

  5. Collins, G.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

    Google Scholar 

  6. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, New York (1996)

    MATH  Google Scholar 

  7. El Din, M.S., Schost, E.: Properness defects of projections and computation of atleast one point in each connected component of a real algebraic set. Discrete Comput. Geomet. 32(3), 417 (2004)

    MATH  Google Scholar 

  8. Halperin, D.: Arrangements. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 529–562. Chapman and Hall/CRC (2004)

    Google Scholar 

  9. Hansen, E.: Global optimization using interval analysis - the multi-dimensional case. Numerische Mathematik 34(3), 247–270 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hundt, C., Liśkiewicz, M.: On the complexity of affine image matching. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 284–295. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Jelonek, Z.: Topological characterization of finite mappings. Bull. Polish Acad. Sci. Math 49(3), 279–283 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Jelonek, Z., Kurdyka, K.: Quantitative generalized Bertini-Sard theorem for smooth affine varieties. Discrete Comput. Geom. 34(4), 659–678 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kurdyka, K., Orro, P., Simon, S., et al.: Semialgebraic Sard theorem for generalized critical values. J. Diff. Geom. 56(1), 67–92 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Moroz, G.: Properness defects of projection and minimal discriminant variety. J. Symbol. Comput. 46(10), 1139–1157 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mourrain, B., Tecourt, J.P., Teillaud, M.: On the computation of an arrangement of quadrics in 3D. Comput. Geom. 30(2), 145–164 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Neumaier, A.: Interval Methods for Systems of Equations. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  17. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid transformations in 2D digital images. Comput. Vis. Image Underst. 117(4), 393–408 (2013)

    Article  MATH  Google Scholar 

  18. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Topology-preserving conditions for 2D digital images under rigid transformations. J. Math. Imaging Vis. 49(2), 418–433 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid transformation of 2D digital images. IEEE Trans. Image Process. 23(2), 885–897 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nouvel, B., Rémila, E.: On colorations induced by discrete rotations. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 174–183. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Nouvel, B., Rémila, E.: Configurations induced by discrete rotations: periodicity and quasi-periodicity properties. Discrete Appl. Math. 147(2–3), 325–343 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pluta, K., Kenmochi, Y., Passat, N., Talbot, H., Romon, P.: Topological alterations of 3D digital images under rigid transformations. Research report, Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge UMR 8049 (2014). https://hal.archives-ouvertes.fr/hal-01333586

  23. Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijective rigid motions of the 2D cartesian grid. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 359–371. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32360-2_28

    Chapter  Google Scholar 

  24. Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijectivity certification of 3D digitized rotations. In: Bac, A., Mari, J. (eds.) CTIC 2016. LNCS, vol. 9667, pp. 30–41. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  25. Rabier, P.J.: Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds. Ann. Math. 146, 647–691 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. Part I: Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals. J. Symbol. Comput. 13(3), 255–299 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rouillier, F., Zimmermann, P.: Efficient isolation of polynomial’s real roots. J. Comput. Appl. Math. 162(1), 33–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Safey El Din, M.: Testing sign conditions on a multivariate polynomial and applications. Math. Comput. Sci. 1(1), 177–207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Singla, P., Junkins, J.L.: Multi-resolution Methods for Modeling and Control of Dynamical Systems. CRC Press, Boca Raton (2008)

    Book  MATH  Google Scholar 

  30. Thibault, Y.: Rotations in 2D and 3D discrete spaces. Ph.D. thesis, Université Paris-Est (2010)

    Google Scholar 

  31. Thibault, Y., Sugimoto, A., Kenmochi, Y.: 3D discrete rotations using hinge angles. Theoret. Comput. Sci. 412(15), 1378–1391 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Computing Surveys (CSUR) 38(4), 13 (2006)

    Article  Google Scholar 

  33. Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work received funding from the project Singcast (ANR–13–JS02–0006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kacper Pluta or Guillaume Moroz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Pluta, K., Moroz, G., Kenmochi, Y., Romon, P. (2016). Quadric Arrangement in Classifying Rigid Motions of a 3D Digital Image. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45641-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45640-9

  • Online ISBN: 978-3-319-45641-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics