Skip to main content

On Formal Presentation of Update Rules, Density Estimate and Using Floor Fields in CA FF Pedestrian Dynamics Model SIgMA.CA

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9863))

Abstract

The article deals with a formal presentation of transition rules in the CA pedestrian dynamics model. The model is stochastic and supposes short-term decisions made by the pedestrians [9, 11]. A possibility to move according the shortest path and the shortest time strategies are implemented to the model. This feature is reflected in update rules and transition probabilities which are presented in the paper in formal mathematical way. Computational artifacts which concern using of static floor field and people density estimate are discussed as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This trick of choosing the current position is provoked by the fact that when moving directionally people usually stop only if the preferable direction is occupied. The original FF model [22] never gives zero probability to the current position, and it may be chosen independent of the environment.

  2. 2.

    In contrast with original floor field models [3, 17] to take in to account other people we use current local density in the direction instead of dynamical field D which store “historical” data of the flow intensivity.

References

  1. Bandini, S., Gorrini, A., Vizzari, G.: Towards an integrated approach to crowd analysis and crowd synthesis: a case study and first results. Pattern Recogn. Lett. 44, 16–29 (2014)

    Article  Google Scholar 

  2. Bandman, O.: Cellular automata composition techniques for spatial dynamics simulation. In: Kroc, J., Sloot, P.M.A., Hoekstra, A.G. (eds.) Simulating Complex Systems by Cellular Automata, pp. 81–115. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Burstedde, V., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a 2-dimensional cellular automaton. Physica A 295, 507–525 (2001)

    Article  MATH  Google Scholar 

  4. Dudek-Dyduch, E., Was, J.: Knowledge representation of pedestrian dynamics in crowd: formalism of cellular automata. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1101–1110. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Gwizdałła, T.M.: Some properties of the floor field cellular automata evacuation model. Phys. A Stat. Mech. Appl. 419, 718–728 (2015)

    Article  Google Scholar 

  6. Hall, E.T.: The Hidden Dimension. Garden City, New York (1966)

    Google Scholar 

  7. Henein, C.M., White, T.: Macroscopic effects of microscopic forces between agents in crowd models. Physica A 373, 694–718 (2007)

    Article  Google Scholar 

  8. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312(1), 260–276 (2002)

    Article  MATH  Google Scholar 

  9. Kirik, E., Yurgel’yan, T., Krouglov, D.: The shortest time and/or the shortest path strategies in a CA FF pedestrian dynamics model. J. Sib. Fed. Univ. Math. Phys. 2(3), 271–278 (2009)

    MATH  Google Scholar 

  10. Kirik, E., Yurgel’yan, T., Krouglov, D.: On influencing of a space geometry on dynamics of some CA pedestrian movement model. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 474–479. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Kirik, E., Yurgel’yan, T., Krouglov, D.: On realizing the shortest time strategy in a CA FF pedestrian dynamics model. Cybern. Syst. 42(1), 1–15 (2011)

    Article  MATH  Google Scholar 

  12. Kirik, E., Yurgel’yan, T., Krouglov, D.: On time scaling and validation of a stochastic CA pedestrian dynamics model. In: Peacock, R.D., Kuligowski, E.D., Averill, J.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 819–822. Springer, US (2011)

    Chapter  Google Scholar 

  13. Kirik, E., Vitova, T.: On validation of the SIgMA.CA pedestrian dynamics model with bottleneck flow. In: Bandini, S., Sirakoulis, G. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 719–727. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Kirik, E., Vitova, T.: Cellular automata pedestrian movement model SIgMA.CA: model parameters as an instrument to regulate movement regimes. In: Was, J., Sirakoulis, G., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 501–507. Springer, Heidelberg (2014)

    Google Scholar 

  15. Kretz, T., Schreckenberg, M.: F.A.S.T. - Floor field and agent-based simulation tool. In: Proceedings of International Symposium of Transport Simulation 2006, pp. 125–136 (2006)

    Google Scholar 

  16. Malinetski, G.G., Stepantsov, M.E.: Application of cellular automata to modeling the motion of a group of people. Comput. Math. Phys. 44(11), 1992–1996 (2004)

    MathSciNet  Google Scholar 

  17. Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field CA model for evacuation dynamics. IEICE Trans. Inf. Syst. E87–D(3), 726–732 (2004)

    Google Scholar 

  18. Parzen, E.: On estimation of probability density function. Ann. Math. Stat. 33, 1065–1076 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  19. Predtetschenski, W.M., Milinski, A.I.: Personenströme in Gebäuden - Berechnungsmethoden für die Projektierung. Verlagsgesellschaft Rudolf Müller, Köln-Braunsfeld (1971)

    Google Scholar 

  20. Rosenblat, M.: Remarks on some non-parametric estimates of a density function. Ann. Math. Stat. 27, 832–837 (1956)

    Article  Google Scholar 

  21. Schadschneider, A., Klingsch, W., Kluepfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: empirical results, modeling and applications. In: Meyers, R.A. (ed.) Extreme Environmental Events. Encyclopedia of Complexity and System Science, vol. 3, pp. 3142–3176. Springer, Heidelberg (2009)

    Google Scholar 

  22. Schadschneider, A., Seyfried, A.: Validation of CA models of pedestrian dynamics with fundamental diagrams. Cybern. Syst. 40(5), 367–389 (2009)

    Article  MATH  Google Scholar 

  23. Sobol’, I.M.: Monte Carlo method. Nauka, Moscow (1972). (in Russian)

    Google Scholar 

  24. Toffolli, T., Margolus, N.: Cellular automata machines. Physica D 10, 117–127 (1987)

    Article  Google Scholar 

  25. Was, J., Gudowski, B., Matuszyk, P.J.: Social distances model of pedestrian dynamics. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 492–501. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Yanagisawa, D., Nishinari, K.: Mean-field theory for pedestrian outflow through an exit. Phys. Rev. E 76, 061117 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Kirik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kirik, E., Vitova, T. (2016). On Formal Presentation of Update Rules, Density Estimate and Using Floor Fields in CA FF Pedestrian Dynamics Model SIgMA.CA. In: El Yacoubi, S., Wąs, J., Bandini, S. (eds) Cellular Automata. ACRI 2016. Lecture Notes in Computer Science(), vol 9863. Springer, Cham. https://doi.org/10.1007/978-3-319-44365-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44365-2_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44364-5

  • Online ISBN: 978-3-319-44365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics