Skip to main content

Application of Lithium Metal Anodes

  • Chapter
  • First Online:
Lithium Metal Anodes and Rechargeable Lithium Metal Batteries

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 249))

Abstract

Li metal is an ideal anode to replace carbon based anode used in the state of the art Li-ion batteries. It is also widely used in Li-S and Li-air batteries. Although the use of Li metal anodes in these batteries has been limited by Li dendrite growth and the low CE of Li cycling, the stability of Li metal anodes is much different when used in different types of Li metal batteries and will be discussed separately in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham KM, Jiang Z (1996a) Solid polymer electrolyte-based oxygen batteries. US 5510209

    Google Scholar 

  • Abraham KM, Jiang Z (1996b) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1–5

    Article  Google Scholar 

  • Abraham KM, Jiang Z, Carroll B (1997) Highly conductive PEO-like polymer electrolytes. Chem Mater 9(9):1978–1988

    Article  Google Scholar 

  • Agostini M, Aihara Y, Yamada T, Scrosati B, Hassoun J (2013) A lithium–sulfur battery using a solid, glass-type P2S5–Li2S electrolyte. Solid State Ionics 244:48–51. doi:http://dx.doi.org/10.1016/j.ssi.2013.04.024

  • Arai H, Hayashi M (2009) Secondary batteries-metal-air systems: overview (secondary and primary). In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 347–355

    Chapter  Google Scholar 

  • Aurbach D, Zinigrad E, Teller H, Dan P (2000) Factors which limit the cycle life of rechargeable lithium (metal) batteries. J Electrochem Soc 147:1274–1279

    Article  Google Scholar 

  • Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148:405–416

    Article  Google Scholar 

  • Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc 156(8):A694–A702. doi:10.1149/1.3148721

  • Autolib’ Bluecar carsharing service, Paris, France, by Mariordo (Mario Roberto Durán Ortiz) is licensed under CC BY-SA 3.0 and found on Wikipedia https://en.wikipedia.org/wiki/Bollor%C3%A9_Bluecar#/media/File:Paris_Autolib_06_2012_Bluecar_2907.JPG. Accessed 31 May 2016

  • Barchasz C, Molton F, Duboc C, Leprêtre J-C, Patoux S, Alloin F (2012) Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal Chem 84(9):3973–3980. doi:10.1021/ac2032244

  • Barchasz C, Lepretre JC, Patoux S, Alloin F (2013a) Revisiting TEGDME/DIOX binary electrolytes for lithium/sulfur batteries: importance of solvation ability and additives. J Electrochem Soc 160(3):A430–A436. doi:10.1149/2.022303jes

  • Barchasz C, Leprêtre J-C, Patoux S, Alloin F (2013b) Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries. Electrochim Acta 89:737–743. doi:10.1016/j.electacta.2012.11.001

  • Barghamadi M, Kapoor A, Wen C (2013) A review on Li-S batteries as a high efficiency rechargeable lithium battery. J Electrochem Soc 160(8):A1256–A1263. doi:10.1149/2.096308jes

  • Bates JB, Dudney NJ, Gruzalski GR, Zuhr RA, Choudhury A, Luck CF, Robertson JD (1993) Fabrication and characterization of amorphous lithium electrolyte thin-films and rechargeable thin-film batteries. J Power Sources 43(1–3):103–110. doi:10.1016/0378-7753(93)80106-y

  • Bates JB, Dudney NJ, Lubben DC, Gruzalski GR, Kwak BS, Yu X, Zuhr RA (1995) Thin-film rechargeable lithium batteries. J Power Sources 54(1):58–62. doi:http://dx.doi.org/10.1016/0378-7753(94)02040-A

  • Beattie SD, Manolescu DM, Blair SL (2009) High-capacity lithium-air cathodes. J Electrochem Soc 156(1):A44–A47. doi:10.1149/1.3005989

    Article  Google Scholar 

  • Blurton KF, Oswin HG (1972) Refuelable batteries. In: Proceedings of the symposium on non-fossil chemical fuels, preprints of papers presented at the 163rd national meeting of the American Chemical Society, vol 2, Boston, Massachusetts, 10–14 April 1972, American Chemical Society, Division of Fuel Chemistry, Washington DC, pp 48–69

    Google Scholar 

  • Blurton KF, Sammells AF (1979) Metal-air batteries—their status and potential—review. J Power Sources 4(4):263–279

    Article  Google Scholar 

  • Bresser D, Passerini S, Scrosati B (2013) Recent progress and remaining challenges in sulfur-based lithium secondary batteries—a review. Chem Commun 49(90):10545–10562. doi:10.1039/C3CC46131A

    Article  Google Scholar 

  • Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29

    Article  Google Scholar 

  • Brückner J, Thieme S, Böttger-Hiller F, Bauer I, Grossmann HT, Strubel P, Althues H, Spange S, Kaskel S (2014) Carbon-based anodes for lithium sulfur full cells with high cycle stability. Adv Funct Mater 24(9):1284–1289. doi:10.1002/adfm.201302169

    Article  Google Scholar 

  • Bryngelsson H, Stjerndahl M, Gustafsson T, Edström K (2007) How dynamic is the SEI? J Power Sources 174(2):970–975. doi:10.1016/j.jpowsour.2007.06.050

    Article  Google Scholar 

  • Bucur CB, Muldoon J, Lita A, Schlenoff JB, Ghostine RA, Dietz S, Allred G (2013) Ultrathin tunable ion conducting nanomembranes for encapsulation of sulfur cathodes. Energy Environ Sci 6(11):3286–3290. doi:10.1039/C3EE42739K

    Article  Google Scholar 

  • Busche MR, Adelhelm P, Sommer H, Schneider H, Leitner K, Janek J (2014) Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates. J Power Sources 259:289–299. doi:10.1016/j.jpowsour.2014.02.075

    Article  Google Scholar 

  • Chen L, Shaw LL (2014) Recent advances in lithium–sulfur batteries. J Power Sources 267:770–783. doi:10.1016/j.jpowsour.2014.05.111

    Article  Google Scholar 

  • Chung S-H, Manthiram A (2014a) Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li-S batteries. Adv Mater 26(9):1360–1365. doi:10.1002/adma.201304365

    Article  Google Scholar 

  • Chung S-H, Manthiram A (2014b) A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells. ChemSusChem 7(6):1655–1661. doi:10.1002/cssc.201301287

    Article  Google Scholar 

  • Chung S-H, Manthiram A (2014c) High-performance Li–S batteries with an ultra-lightweight MWCNT-coated separator. J Phys Chem Lett 5(11):1978–1983. doi:10.1021/jz5006913

    Article  Google Scholar 

  • Chung SH, Manthiram A (2014d) Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. Adv Funct Mater 24(33):5299–5306. doi:10.1002/adfm.201400845

    Article  Google Scholar 

  • Debart A, Bao J, Armstrong G, Bruce PG (2007a) Effect of catalyst on the performance of rechargeable lithium/air batteries. ECS Trans 3(27):225–232. doi:10.1149/1.2793594

    Article  Google Scholar 

  • Debart A, Bao J, Armstrong G, Bruce PG (2007b) An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J Power Sources 147(2):1177–1182

    Article  Google Scholar 

  • Debart A, Paterson AJ, Bao J, Bruce PG (2008) Alpha-MnO2 nanowires: a catalyst for the O-2 electrode in rechargeable lithium batteries. Angew Chem Int Edit 47(24):4521–4524. doi:10.1002/anie.200705648

    Article  Google Scholar 

  • Demir-Cakan R, Morcrette M, Gangulibabu GA, Dedryvere R, Tarascon J-M (2013) Li-S batteries: simple approaches for superior performance. Energy Environ Sci 6(1):176–182. doi:10.1039/C2EE23411D

    Article  Google Scholar 

  • Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang J-G (2013) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135(11):4450–4456. doi:10.1021/ja312241y

    Article  Google Scholar 

  • Dobley A, Morein C, Abraham KM (2006a) Cathode optimization for lithium-air batteries. Paper presented at the 208th meeting of the electrochemical society abstracts: energy technology and battery joint general session, 16–21 Oct 2005, Los Angeles, California

    Google Scholar 

  • Dobley A, Morein C, Roark R, Abraham KM (2006b) Paper presented at the proceedings of the 42nd power sources conference, 12–15 June 2006, Philadelphia, Pennsylvania

    Google Scholar 

  • Dobley A, Morein C, Roark R, Abraham KM (2006c) Large prototype lithium air batteries. In: Proceedings of the 42nd power sources conference, Philadelphia, Pennsylvania, 12–15 June 2006. U.S. Army Communications-Electronics Command, Fort Monmouth, New Jersey

    Google Scholar 

  • Egashira M (2009) Secondary batteries-metal-air systems: iron-air (secondary and primary). In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 372–375

    Chapter  Google Scholar 

  • Elazari R, Salitra G, Gershinsky G, Garsuch A, Panchenko A, Aurbach D (2012) Rechargeable lithiated silicon–sulfur (SLS) battery prototypes. Electrochem Commun 14(1):21–24. doi:10.1016/j.elecom.2011.10.020

    Article  Google Scholar 

  • Evers S, Nazar LF (2012) New approaches for high energy density lithium-sulfur battery cathodes. Acc Chem Res 46(5):1135–1143. doi:10.1021/ar3001348

    Article  Google Scholar 

  • Fu Y, Su Y-S, Manthiram A (2013) Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angew Chem Int Ed 52(27):6930–6935. doi:10.1002/anie.201301250

    Article  Google Scholar 

  • Gao J, Lowe MA, Kiya Y, Abruña HD (2011) Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C 115(50):25132–25137. doi:10.1021/jp207714c

    Article  Google Scholar 

  • Giordani V, Freunberger SA, Bruce PG, Tarascon JM, Larcher D (2010) H2O2 decomposition reaction as selecting tool for catalysts in Li-O-2 cells. Electrochem Solid State Lett 13(12):A180–A183. doi:10.1149/1.3494045

    Article  Google Scholar 

  • Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium−air battery: promise and challenges. J Phys Chem Lett 1:2193–2203

    Article  Google Scholar 

  • Gregory DP (1972) Metal-air batteries. Mills and Boon, London

    Google Scholar 

  • Haas O, Van Wesemael J (2009) Secondary batteries-metal-air systems: zinc-air: electrical recharge. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 384–392

    Chapter  Google Scholar 

  • Hakari T, Nagao M, Hayashi A, Tatsumisago M (2014) Preparation of composite electrode with Li2S–P2S5 glasses as active materials for all-solid-state lithium secondary batteries. Solid State Ionics 262:147–150. doi:10.1016/j.ssi.2013.09.023

    Article  Google Scholar 

  • Hamlen RP, Atwater TB (2001) Metal/air batteries. In: Linden D, Reddy T (eds) Handbook of batteries, 3rd edn. McGraw Hill, New York, pp 38.31–38.53

    Google Scholar 

  • Hassoun J, Scrosati B (2010) A high-performance polymer tin sulfur lithium ion battery. Angew Chem Int Ed 49(13):2371–2374. doi:10.1002/anie.200907324

    Article  Google Scholar 

  • Hayashi A, Ohtomo T, Mizuno F, Tadanaga K, Tatsumisago M (2003) All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochem Commun 5(8):701–705. doi:10.1016/S1388-2481(03)00167-X

    Article  Google Scholar 

  • Hayashi A, Ohtsubo R, Ohtomo T, Mizuno F, Tatsumisago M (2008) All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material. J Power Sources 183(1):422–426. doi:10.1016/j.jpowsour.2008.05.031

    Article  Google Scholar 

  • Heine J, Krüger S, Hartnig C, Wietelmann U, Winter M, Bieker P (2014) Coated lithium powder (CLiP) electrodes for lithium-metal batteries. Adv Energy Mater 4(5). doi:10.1002/aenm.201300815

  • Huang J-Q, Zhang Q, Zhang S-M, Liu X-F, Zhu W, Qian W-Z, Wei F (2013) Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode. Carbon 58:99–106. doi:10.1016/j.carbon.2013.02.037

    Article  Google Scholar 

  • Huang C, Xiao J, Shao Y, Zheng J, Bennett WD, Lu D, Saraf LV, Engelhard M, Ji L, Zhang J, Li X, Graff GL, Liu J (2014a) Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures. Nat Commun 5:3015. doi:10.1038/ncomms4015

    Google Scholar 

  • Huang J-Q, Zhang Q, Peng H-J, Liu X-Y, Qian W-Z, Wei F (2014b) Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries. Energy Environ Sci 7(1):347–353. doi:10.1039/C3EE42223B

    Article  Google Scholar 

  • Jeddi K, Zhao Y, Zhang Y, Konarov A, Chen P (2013) Fabrication and characterization of an effective polymer nanocomposite electrolyte membrane for high performance lithium/sulfur batteries. J Electrochem Soc 160(8):A1052–A1060. doi:10.1149/2.010308jes

    Article  Google Scholar 

  • Jeddi K, Sarikhani K, Qazvini NT, Chen P (2014) Stabilizing lithium/sulfur batteries by a composite polymer electrolyte containing mesoporous silica particles. J Power Sources 245:656–662. doi:10.1016/j.jpowsour.2013.06.147

    Article  Google Scholar 

  • Jeong T-G, Moon YH, Chun H-H, Kim HS, Cho BW, Kim Y-T (2013) Free standing acetylene black mesh to capture dissolved polysulfide in lithium sulfur batteries. Chem Commun 49(94):11107–11109. doi:10.1039/C3CC46358C

    Article  Google Scholar 

  • Ji XL, Lee KT, Nazar LF (2009) Nature Mater 8:500–506

    Article  Google Scholar 

  • Jiang J, Shi W, Zheng J, Zuo P, Xiao J, Chen X, Xu W, Zhang J-G (2014) Optimized operating range for large-format LiFePO4/graphite batteries. J Electrochem Soc 161(3):A336–A341. doi:10.1149/2.052403jes

    Article  Google Scholar 

  • Jin Z, Xie K, Hong X (2013a) Electrochemical performance of lithium/sulfur batteries using perfluorinated ionomer electrolyte with lithium sulfonyl dicyanomethide functional groups as functional separator. RSC Adv 3(23):8889–8898. doi:10.1039/C3RA41517A

    Article  Google Scholar 

  • Jin Z, Xie K, Hong X, Hu Z (2013b) Capacity fading mechanism in lithium sulfur cells using poly(ethylene glycol)-borate ester as plasticizer for polymer electrolytes. J Power Sources 242:478–485. doi:10.1016/j.jpowsour.2013.05.086

    Article  Google Scholar 

  • Joerissen L (2009) Secondary batteries-metal-air systems: bifunctional oxygen electrodes. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 356–371

    Chapter  Google Scholar 

  • Kim H, Lee JT, Yushin G (2013a) High temperature stabilization of lithium–sulfur cells with carbon nanotube current collector. J Power Sources 226:256–265. doi:10.1016/j.jpowsour.2012.10.028

    Article  Google Scholar 

  • Kim H, Lee JT, Lee D-C, Oschatz M, Cho WI, Kaskel S, Yushin G (2013b) Enhancing performance of Li–S cells using a Li–Al alloy anode coating. Electrochem Commun 36:38–41. doi:10.1016/j.elecom.2013.09.002

    Article  Google Scholar 

  • Kim H, Wu F, Lee JT, Nitta N, Lin H-T, Oschatz M, Cho WI, Kaskel S, Borodin O, Yushin G (2014) In situ formation of protective coatings on sulfur cathodes in lithium batteries with LiFSI-based organic electrolytes. Adv Energy Mater. doi:10.1002/aenm.201401792

    Google Scholar 

  • Kinoshita K (1992) Electrochemical oxygen technology. The electochemical society series. John Wiley & Sons, New York

    Google Scholar 

  • Kinoshita S, Okuda K, Machida N, Shigematsu T (2014) Additive effect of ionic liquids on the electrochemical property of a sulfur composite electrode for all-solid-state lithium–sulfur battery. J Power Sources 269:727–734. doi:10.1016/j.jpowsour.2014.07.055

    Article  Google Scholar 

  • Kowalczk I, Read J, Salomon M (2007) Li-air batteries: a classic example of limitations owing to solubilities. Pure Appl Chem 79(5):851–860. doi:10.1351/pac200779050851

    Article  Google Scholar 

  • Kuboki T, Okuyama T, Ohsaki T, Takami N (2005) Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J Power Sources 146(1–2):766–769. doi:10.1016/j.jpowsour.2005.03.082

    Article  Google Scholar 

  • Kulisch J, Sommer H, Brezesinski T, Janek J (2014) Simple cathode design for Li-S batteries: cell performance and mechanistic insights by in operando X-ray diffraction. Phys Chem Chem Phys 16(35):18765–18771. doi:10.1039/C4CP02220C

    Article  Google Scholar 

  • Kumar B, Kumar J, Leese R, Fellner JP, Rodrigues SJ, Abraham KM (2010) A solid-state, rechargeable, long cycle life lithium-air battery. J Electrochem Soc 157(1):A50–A54. doi:10.1149/1.3256129

    Article  Google Scholar 

  • Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA (2009) Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J Phys Chem C 113(46):20127–20134. doi:10.1021/jp908090s

    Article  Google Scholar 

  • Lee YM, Choi N-S, Park JH, Park J-K (2003) Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J Power Sources 119–121:964–972. doi:10.1016/s0378-7753(03)00300-8

    Article  Google Scholar 

  • Lee S-H, Tracy E, Liu P (2004) Buried anode lithium thin film battery and process for forming the same. USA Patent 6,805,999, 19 October 2004

    Google Scholar 

  • Lee J-S, Kim ST, Cao R, Choi N-S, Liu M, Lee KT, Cho J (2011) Adv Energy Mater 1:34–50

    Google Scholar 

  • Li W, Hicks-Garner J, Wang J, Liu J, Gross AF, Sherman E, Graetz J, Vajo JJ, Liu P (2014) V2O5 polysulfide anion barrier for long-lived Li-S batteries. Chem Mater 26(11):3404–3410

    Article  Google Scholar 

  • Liang X, Wen Z, Liu Y, Zhang H, Huang L, Jin J (2011a) Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J Power Sources 196(7):3655–3658. doi:10.1016/j.jpowsour.2010.12.052

    Article  Google Scholar 

  • Liang X, Wen Z, Liu Y, Wu M, Jin J, Zhang H, Wu X (2011b) Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J Power Sources 196(22):9839–9843. doi:10.1016/j.jpowsour.2011.08.027

  • Lin Z, Liu Z, Dudney NJ, Liang C (2013a) Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano 7(3):2829–2833. doi:10.1021/nn400391h

    Article  Google Scholar 

  • Lin Z, Liu Z, Fu W, Dudney NJ, Liang C (2013b) Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries. Adv Funct Mater 23(8):1064–1069. doi:10.1002/adfm.201200696

    Article  Google Scholar 

  • Linden D, Reddy T (2001) Handbook of batteries, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Littauer EL, Tsai KC (1977) Corrosion of lithium in alkaline-solution. J Electrochem Soc 124(6):850–855

    Article  Google Scholar 

  • Liu C, Ma X, Xu F, Zheng L, Zhang H, Feng W, Huang X, Armand M, Nie J, Chen H, Zhou Z (2014a) Ionic liquid electrolyte of lithium bis(fluorosulfonyl)imide/N-Methyl-N-propylpiperidinium bis(fluorosulfonyl)imide for Li/natural graphite cells: effect of concentration of lithium salt on the physicochemical and electrochemical properties. Electrochim Acta 149:370–385. doi:10.1016/j.electacta.2014.10.048

    Article  Google Scholar 

  • Liu Z, Zhang X-H, Lee C-S (2014b) A stable high performance Li-S battery with a polysulfide ion blocking layer. J Mater Chem A 2(16):5602–5605. doi:10.1039/C4TA00015C

    Article  Google Scholar 

  • López CM, Vaughey JT, Dees DW (2009) Morphological transitions on lithium metal anodes. J Electrochem Soc 156(9):A726–A729. doi:10.1149/1.3158548

    Article  Google Scholar 

  • Lu Y, Tu Z, Archer LA (2014) Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat Mater 13(10):961–969. doi:10.1038/nmat4041

    Article  Google Scholar 

  • Lv D, Shao Y, Lozano T, Bennett WD, Graff GL, Polzin B, Zhang J-G, Engelhard MH, Saenz NT, Henderson WA, Bhattacharya P, Liu J, Xiao J (2015) Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv Energy Mater 5(3):1400993. doi:10.1002/aenm.201400993

    Article  Google Scholar 

  • Ma G, Wen Z, Jin J, Wu M, Wu X, Zhang J (2014) Enhanced cycle performance of Li–S battery with a polypyrrole functional interlayer. J Power Sources 267:542–546. doi:10.1016/j.jpowsour.2014.05.057

    Article  Google Scholar 

  • Manthiram A, Fu Y, Su Y-S (2012) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46(5):1125–1134. doi:10.1021/ar300179v

    Article  Google Scholar 

  • Manthiram A, Fu Y, Chung SH, Zu C, Su YS (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114(23):11751–11787. doi:10.1021/cr500062v

    Article  Google Scholar 

  • Marmorstein D, Yu TH, Striebel KA, McLarnon FR, Hou J, Cairns EJ (2000) Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources 89(2):219–226. doi:10.1016/S0378-7753(00)00432-8

    Article  Google Scholar 

  • Miao R, Yang J, Feng X, Jia H, Wang J, Nuli Y (2014) Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J Power Sources 271:291–297. doi:10.1016/j.jpowsour.2014.08.011

    Article  Google Scholar 

  • Mikhaylik YV (2008) Electrolytes for lithium sulfur cells. USA Patent 7,354,680, 8 April 2008

    Google Scholar 

  • Munichandraiah N, Scanlon LG, Marsh RA (1998) Surface films of lithium: an overview of electrochemical studies. J Power Sources 72:203–210

    Article  Google Scholar 

  • Nagao M, Hayashi A, Tatsumisago M (2011) Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte. Electrochim Acta 56(17):6055–6059. doi:10.1016/j.electacta.2011.04.084

    Article  Google Scholar 

  • Nagao M, Hayashi A, Tatsumisago M (2012a) High-capacity Li2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries. J Mater Chem 22(19):10015–10020. doi:10.1039/C2JM16802B

    Article  Google Scholar 

  • Nagao M, Hayashi A, Tatsumisago M (2012b) Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery. Electrochem Commun 22:177–180. doi:10.1016/j.elecom.2012.06.015

    Article  Google Scholar 

  • Nagao M, Imade Y, Narisawa H, Kobayashi T, Watanabe R, Yokoi T, Tatsumi T, Kanno R (2013) All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte. J Power Sources 222:237–242. doi:10.1016/j.jpowsour.2012.08.041

    Article  Google Scholar 

  • Nazar LF, Cuisinier M, Pang Q (2014) Lithium-sulfur batteries. MRS Bull 39(05):436–442. doi:10.1557/mrs.2014.86

    Article  Google Scholar 

  • Neudecker BJ, Dudney NJ, Bates JB (2000) “Lithium-free” thin-film battery with in situ plated Li anode. J Electrochem Soc 147(2):517–523

    Article  Google Scholar 

  • Ogasawara T, Debart A, Holzapfel M, Novak P, Bruce PG (2006) Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc 128(4):1390–1393. doi:10.1021/ja056811q

    Article  Google Scholar 

  • Oh S, Yoon W (2014) Effect of polypyrrole coating on Li powder anode for lithium-sulfur secondary batteries. Int J Precis Eng Manuf 15(7):1453–1457. doi:10.1007/s12541-014-0490-y

    Article  Google Scholar 

  • Oh SJ, Lee JK, Yoon WY (2014) Preventing the dissolution of lithium polysulfides in lithium-sulfur cells by using Nafion-coated cathodes. ChemSusChem 7(9):2562–2566. doi:10.1002/cssc.201402318

    Article  Google Scholar 

  • Oswin HG (1967) Performance forecast of selected static energy conversion devices. In: Sherman GW, Devol L (eds) Proceedings of the 29th meeting of AGARD propulsion and energetics panel, Liege, Belgium, 12–16 June 1967. Air Force Aero Proplusion Laboratory, Wright-Patterson Air Force Base, Ohio, p 397

    Google Scholar 

  • Park J-W, Ueno K, Tachikawa N, Dokko K, Watanabe M (2013) Ionic liquid electrolytes for lithium-sulfur batteries. J Phys Chem C 117(40):20531–20541. doi:10.1021/jp408037e

    Article  Google Scholar 

  • Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang JG (2015) High rate and stable cycling of lithium metal anode. Nat Commun 6:6362. doi:10.1038/ncomms7362

    Article  Google Scholar 

  • Qian JF, Adams BD, Zheng JM, Xu W, Henderson WA, Wang J, Bowden ME, Xu SC, Hu JZ, Zhang JZ (2016) Anode-free rechargeable lithium metal batteries. Adv Funct Mater 2016. doi:10.1002/adfm.201602353

  • Ratnakumar BV, Smart MC, Surampudi S (2001) Effects of SEI on the kinetics of lithium intercalation. J Power Sources 97–98:137–139. doi:10.1016/S0378-7753(01)00682-6

    Article  Google Scholar 

  • Read J (2002) Characterization of the lithium/oxygen organic electrolyte battery. J Electrochem Soc 149(9):A1190–A1195. doi:10.1149/1.1498256

    Article  Google Scholar 

  • Read J (2006) Ether-based electrolytes for the lithium/oxygen organic electrolyte battery. J Electrochem Soc 153(1):A96–A100. doi:10.1149/1.2131827

    Article  Google Scholar 

  • Read J, Mutolo K, Ervin M, Behl W, Wolfenstine J, Driedger A, Foster D (2003) Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J Electrochem Soc 150(10):A1351–A1356. doi:10.1149/1.1606454

    Article  Google Scholar 

  • Scheers J, Fantini S, Johansson P (2014) A review of electrolytes for lithium-sulphur batteries. J Power Sources 255:204–218. doi:10.1016/j.jpowsour.2014.01.023

    Article  Google Scholar 

  • Shao Y, Park S, Xiao J, Zhang J-G, Wang Y, Liu AJ (2012a) Electrocatalysts for nonaqueous lithium-air batteries: status. Challenges, and Perspective. ACS Catalysis 845

    Google Scholar 

  • Shiga T, Nakano H, Imagawa H (2008) Non-aqueous air battery and catalyst therefor. US Patent Application 2008/0299456

    Google Scholar 

  • Shimonishi Y, Zhang T, Johnson P, Imanishi N, Hirano A, Takeda Y, Yamamoto O, Sammes N (2010) A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions. J Power Sources 195(18):6187–6191. doi:10.1016/j.jpowsour.2009.11.023

    Article  Google Scholar 

  • Shin JH, Kim KW, Ahn HJ, Ahn JH (2002) Electrochemical properties and interfacial stability of (PEO)10LiCF3SO3–TinO2n − 1 composite polymer electrolytes for lithium/sulfur battery. Mater Sci Eng, B 95(2):148–156. doi:10.1016/S0921-5107(02)00226-X

    Article  Google Scholar 

  • Smedley S, Zhang XG (2009) Secondary batteries-metal-air systems: zinc-air: hydraulic recharge. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 393–403

    Chapter  Google Scholar 

  • Song JH, Yeon JT, Jang JY, Han JG, Lee SM, Choi NS (2013a) Effect of fluoroethylene carbonate on electrochemical performances of lithium electrodes and lithium-sulfur batteries. J Electrochem Soc 160(6):A873–A881. doi:10.1149/2.101306jes

    Article  Google Scholar 

  • Song MK, Cairns EJ, Zhang Y (2013b) Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale 5(6):2186–2204. doi:10.1039/c2nr33044j

    Article  Google Scholar 

  • Su Y-S, Manthiram A (2012) Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun 3:1166

    Article  Google Scholar 

  • Sun Y-K, Chen Z, Noh H-J, Lee D-J, Jung H-G, Ren Y, Wang S, Yoon CS, Myung S-T, Amine K (2012) Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater 11(11):942–947. doi:10.1038/nmat3435

    Article  Google Scholar 

  • Suo L, Hu YS, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481. doi:10.1038/ncomms2513

    Article  Google Scholar 

  • Tang Q, Shan Z, Wang L, Qin X, Zhu K, Tian J, Liu X (2014) Nafion coated sulfur–carbon electrode for high performance lithium–sulfur batteries. J Power Sources 246:253–259. doi:10.1016/j.jpowsour.2013.07.076

    Article  Google Scholar 

  • Tobishima S, Sakurai Y, Yamaki J (1996) Safety characteristics of rechargeable lithium metal cells. In: 8th international meeting on lithium batteries, p 362. doi:10.1016/S0378-7753(96)02584-0

  • Unemoto A, Ogawa H, Gambe Y, Honma I (2014) Development of lithium-sulfur batteries using room temperature ionic liquid-based quasi-solid-state electrolytes. Electrochim Acta 125:386–394. doi:10.1016/j.electacta.2014.01.105

    Article  Google Scholar 

  • Vaughey JT, Liu G, Zhang J-G (2014) Stabilizing the surface of lithium metal. MRS Bull 39(05):429–435. doi:10.1557/mrs.2014.88

    Article  Google Scholar 

  • Visco SJ, Nimon E, De Jonghe LC, Katz B, Chu MY (2004a) Lithium fuel cells. Paper presented at the proceedings of the 12th international meeting on lithium batteries, 27 June–2 July 2004, Nara, Japan

    Google Scholar 

  • Visco SJ, Katz B, Nimon YS, De Jonghe LC (2007) Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture. US 7282295

    Google Scholar 

  • Visco SJ, Nimon E, De Jonghe C (2009) Secondary batteries-metal-air systems: lithium-air. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 376–383

    Chapter  Google Scholar 

  • Wang YG, Zhou HS (2010) A lithium-air battery with a potential to continuously reduce O-2 from air for delivering energy. J Power Sources 195(1):358–361. doi:10.1016/j.jpowsour.2009.06.109

    Article  Google Scholar 

  • Wang X, Wang Z, Chen L (2013) Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium–sulfur battery. J Power Sources 242:65–69. doi:10.1016/j.jpowsour.2013.05.063

    Article  Google Scholar 

  • Wang J, Lin F, Jia H, Yang J, Monroe CW, NuLi Y (2014) Towards a safe lithium-sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode. Angew Chem Int Ed 53(38):10099–10104. doi:10.1002/anie.201405157

    Article  Google Scholar 

  • Wang D, Zhong G, Li Y, Gong Z, McDonald MJ, Mi J-X, Fu R, Shi Z, Yang Y (2015) Enhanced ionic conductivity of Li3.5Si0.5P0.5O4 with addition of lithium borate. Solid State Ionics 283:109–114. doi:10.1016/j.ssi.2015.10.009

    Article  Google Scholar 

  • Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4302. doi:10.1021/cr020731c

    Article  Google Scholar 

  • Whittingham MS (2012) History, evolution, and future status of energy storage. In: Proceedings of IEE 100 (special centennial issue), 1518–1534. doi:10.1109/JPROC.2012.2190170

  • Williford RE, Zhang JG (2009) Air electrode design for sustained high power operation of Li/air batteries. J Power Sources 194(2):1164–1170. doi:10.1016/j.jpowsour.2009.06.005

    Article  Google Scholar 

  • Woo J-J, Maroni VA, Liu G, Vaughey JT, Gosztola DJ, Amine K, Zhang Z (2014) Symmetrical impedance study on inactivation induced degradation of lithium electrodes for batteries beyond lithium-ion. J Electrochem Soc 161(5):A827–A830. doi:10.1149/2.089405jes

    Article  Google Scholar 

  • Wu M, Wen Z, Jin J, Cui Y (2013) Effects of combinatorial AlCl3 and pyrrole on the SEI formation and electrochemical performance of Li electrode. Electrochim Acta 103:199–205. doi:10.1016/j.electacta.2013.03.181

    Article  Google Scholar 

  • Wu F, Qian J, Chen R, Lu J, Li L, Wu H, Chen J, Zhao T, Ye Y, Amine K (2014) An effective approach to protect lithium anode and improve cycle performance for Li-S batteries. ACS Appl Mater Interfaces 6(17):15542–15549. doi:10.1021/am504345s

    Google Scholar 

  • Xiao J, Xu W, Wang DY, Zhang JG (2010a) Hybrid air-electrode for Li/air batteries. J Electrochem Soc 157(3):A294–A297. doi:10.1149/1.3280281

    Article  Google Scholar 

  • Xiao J, Wang DH, Xu W, Wang DY, Williford RE, Liu J, Zhang JG (2010b) Optimization of air electrode for Li/air batteries. J Electrochem Soc 157(4):A487–A492. doi:10.1149/1.3314375

    Article  Google Scholar 

  • Xiong S, Kai X, Hong X, Diao Y (2011) Effect of LiBOB as additive on electrochemical properties of lithium-sulfur batteries. Ionics 18(3):249–254. doi:10.1007/s11581-011-0628-1

    Article  Google Scholar 

  • Xiong S, Xie K, Diao Y, Hong X (2012) Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium-sulfur batteries. Electrochim Acta 83:78–86. doi:10.1016/j.electacta.2012.07.118

    Article  Google Scholar 

  • Xiong S, Xie K, Diao Y, Hong X (2013) On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium-sulfur batteries. J Power Sources 236:181–187. doi:10.1016/j.jpowsour.2013.02.072

    Article  Google Scholar 

  • Xiong S, Xie K, Diao Y, Hong X (2014a) Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium-sulfur batteries. J Power Sources 246:840–845. doi:10.1016/j.jpowsour.2013.08.041

    Article  Google Scholar 

  • Xiong S, Xie K, Blomberg E, Jacobsson P, Matic A (2014b) Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries. J Power Sources 252:150–155. doi:10.1016/j.jpowsour.2013.11.119

    Article  Google Scholar 

  • Xiong S, Diao Y, Hong X, Chen Y, Xie K (2014c) Characterization of solid electrolyte interphase on lithium electrodes cycled in ether-based electrolytes for lithium batteries. J Electroanal Chem 719:122–126. doi:10.1016/j.jelechem.2014.02.014

    Article  Google Scholar 

  • Xu W, Xiao J, Zhang J, Wang DY, Zhang JG (2009) Optimization of nonaqueous electrolytes for primary lithium/air batteries operated in ambient environment. J Electrochem Soc 156(10):A773–A779. doi:10.1149/1.3168564

    Article  Google Scholar 

  • Xu W, Xiao J, Wang DY, Zhang J, Zhang JG (2010) Effects of nonaqueous electrolytes on the performance of lithium/air batteries. J Electrochem Soc 157(2):A219–A224. doi:10.1149/1.3269928

    Article  Google Scholar 

  • Xu G, Ding B, Pan J, Nie P, Shen L, Zhang X-W (2014a) High performance lithium-sulfur batteries: advances and challenges. J Mater Chem A 2(32):12662–12676. doi:10.1039/c4ta02097a

    Article  Google Scholar 

  • Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014b) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537. doi:10.1039/c3ee40795k

    Article  Google Scholar 

  • Yamin H, Peled E (1983) Electrochemistry of a nonaqueous lithium/sulfur cell. J Power Sources 9:281–287

    Article  Google Scholar 

  • Yang XH, Xia YY (2010) The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery. J Solid State Electrochem 14(1):109–114. doi:10.1007/s10008-009-0791-8

    Article  MathSciNet  Google Scholar 

  • Yang Y, McDowell MT, Jackson A, Cha JJ, Hong SS, Cui Y (2010) New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett 10(4):1486–1491. doi:10.1021/nl100504q

    Article  Google Scholar 

  • Yang Y, Zheng G, Cui Y (2013a) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032. doi:10.1039/C2CS35256G

    Article  Google Scholar 

  • Yang Y, Zheng G, Cui Y (2013b) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ Sci 6(5):1552–1558. doi:10.1039/C3EE00072A

    Article  Google Scholar 

  • Yao H, Yan K, Li W, Zheng G, Kong D, Seh ZW, Narasimhan VK, Liang Z, Cui Y (2014) Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface. Energy Environ Sci. doi:10.1039/C4EE01377H

  • Ye H, Xu JJ (2008) Polymer electrolytes based on ionic liquids and their application to solid-state thin-film Li-oxygen batteries. ECS Trans 3(42):73–81. doi:10.1149/1.2838194

    Article  Google Scholar 

  • Yim T, Park M-S, Yu J-S, Kim KJ, Im KY, Kim J-H, Jeong G, Jo YN, Woo S-G, Kang KS, Lee I, Kim Y-J (2013) Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochim Acta 107:454–460. doi:10.1016/j.electacta.2013.06.039

    Article  Google Scholar 

  • Yin Y-X, Xin S, Guo Y-G, Wan L-J (2013) Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52(50):13186–13200. doi:10.1002/anie.201304762

    Article  Google Scholar 

  • Younesi R, Hahlin M, Roberts M, Edström K (2013) The SEI layer formed on lithium metal in the presence of oxygen: a seldom considered component in the development of the Li–O2 battery. J Power Sources 225:40–45. doi:10.1016/j.jpowsour.2012.10.011

    Article  Google Scholar 

  • Yu X, Xie J, Yang J, Wang K (2004) All solid-state rechargeable lithium cells based on nano-sulfur composite cathodes. J Power Sources 132(1–2):181–186. doi:10.1016/j.jpowsour.2004.01.034

    Article  Google Scholar 

  • Yu M, Yuan W, Li C, Hong J-D, Shi G (2014) Performance enhancement of a graphene-sulfur composite as a lithium-sulfur battery electrode by coating with an ultrathin Al2O3 film via atomic layer deposition. J Mater Chem A 2(20):7360–7366. doi:10.1039/C4TA00234B

    Article  Google Scholar 

  • Zaghib K (2012) Lithium metal for rechargeable polymer and metal-air batteries: challenges and opportunities

    Google Scholar 

  • Zhang XG (2009) Zinc electrodes: overview. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopeida of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 454–468

    Chapter  Google Scholar 

  • Zhang SS (2012a) Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim Acta 70:344–348. doi:10.1016/j.electacta.2012.03.081

    Article  Google Scholar 

  • Zhang SS (2012b) Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte. J Electrochem Soc 159(7):A920–A923. doi:10.1149/2.002207jes

    Article  Google Scholar 

  • Zhang SS (2013a) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162. doi:10.1016/j.jpowsour.2012.12.102

    Article  Google Scholar 

  • Zhang SS (2013b) A concept for making poly(ethylene oxide) based composite gel polymer electrolyte lithium/sulfur battery. J Electrochem Soc 160(9):A1421–A1424. doi:10.1149/2.058309jes

    Article  Google Scholar 

  • Zhang SS, Read JA (2012) A new direction for the performance improvement of rechargeable lithium/sulfur batteries. J Power Sources 200:77–82. doi:10.1016/j.jpowsour.2011.10.076

    Article  Google Scholar 

  • Zhang SS, Tran DT (2013) How a gel polymer electrolyte affects performance of lithium/sulfur batteries. Electrochim Acta 114:296–302. doi:10.1016/j.electacta.2013.10.069

    Article  Google Scholar 

  • Zhang JG, Wang DY, Xu W, Xiao J, Williford RE (2010) Ambient operation of Li/Air batteries. J Power Sources 195(13):4332–4337. doi:10.1016/j.jpowsour.2010.01.022

    Article  Google Scholar 

  • Zhang Y, Zhao Y, Bakenov Z, Gosselink D, Chen P (2014) Poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/nanoclay composite gel polymer electrolyte for lithium/sulfur batteries. J Solid State Electrochem 18(4):1111–1116. doi:10.1007/s10008-013-2366-y

    Article  Google Scholar 

  • Zheng JP, Liang RY, Hendrickson M, Plichta EJ (2008) Theoretical energy density of Li-air batteries. J Electrochem Soc 155(6):A432–A437. doi:10.1149/1.2901961

    Article  Google Scholar 

  • Zheng J, Lv D, Gu M, Wang C, Zhang J-G, Liu J, Xiao J (2013a) How to obtain reproducible results for lithium sulfur batteries? J Electrochem Soc 160(11):A2288–A2292. doi:10.1149/2.106311jes

    Article  Google Scholar 

  • Zheng J, Gu M, Chen H, Meduri P, Engelhard MH, Zhang J-G, Liu J, Xiao J (2013b) Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium-sulfur batteries. J Mater Chem A 1(29):8464–8470. doi:10.1039/C3TA11553D

    Article  Google Scholar 

  • Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 9(8):618–623. doi:10.1038/nnano.2014.152

    Article  Google Scholar 

  • Zhou G, Pei S, Li L, Wang D-W, Wang S, Huang K, Yin L-C, Li F, Cheng H-M (2014) A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv Mater 26(4):625–631. doi:10.1002/adma.201302877

    Article  Google Scholar 

  • Zu C, Manthiram A (2014) Stabilized lithium-metal surface in a polysulfide-rich environment of lithium-sulfur batteries. J Phys Chem Lett 5(15):2522–2527. doi:10.1021/jz501352e

    Article  Google Scholar 

  • Zu C, Su Y-S, Fu Y, Manthiram A (2013) Improved lithium-sulfur cells with a treated carbon paper interlayer. Phys Chem Chem Phys 15(7):2291–2297. doi:10.1039/C2CP43394J

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Guang Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, JG., Xu, W., Henderson, W.A. (2017). Application of Lithium Metal Anodes. In: Lithium Metal Anodes and Rechargeable Lithium Metal Batteries. Springer Series in Materials Science, vol 249. Springer, Cham. https://doi.org/10.1007/978-3-319-44054-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44054-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44053-8

  • Online ISBN: 978-3-319-44054-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics