Skip to main content

Artificial Neural Network Based Compliant Control for Robot Arms

  • Conference paper
  • First Online:
From Animals to Animats 14 (SAB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9825))

Included in the following conference series:

Abstract

The aim of this paper is to present an artificial neural network (ANN) based adaptive nonlinear control approach of a robot arm, with highlight on its capability as a compliant control scheme. The approach is based on a computed torque law and consists of two main components: a feedforward controller (approximated by the ANN) and a proportional-derivative (PD) feedback loop. Here, the feedforward controller is used to approximate the nonlinear system dynamics and can also adapt to the long-term dynamics of the arm while the PD feedback loop can be tuned to obtain proper compliant behaviour to deal with instantaneous disturbances (e.g., collisions). The employed controller structure makes it possible to decouple these two components for individual parameter adjustments. The performance of the control approach is evaluated and demonstrated in physical simulation which shows promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haddadin, S., Albu-Schäffer, A., Luca, A.D., Hirzinger, G.: Collision detection and reaction: a contribution to safe physical human-robot interaction. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3356–3363. IEEE (2008)

    Google Scholar 

  2. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)

    Article  Google Scholar 

  3. Hunt, K.J., Sbarbaro, D., Zbikowski, R., Gawthrop, P.J.: Neural networks for control systems - a survey. Automatica 28(6), 1083–1112 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Isidori, A.: Nonlinear Control Systems. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  5. Kröse, B., van der Smagt, P.: An Introduction to Neural Networks, 8th edn. The University of Amsterdam, The Netherlands (1996)

    Google Scholar 

  6. Krstic, M., Kokotovic, P.V., Kanellakopoulos, I.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    MATH  Google Scholar 

  7. Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot Manipulator Control. Marcel Dekker Inc., New York (2004)

    Google Scholar 

  8. Lewis, F.L., Yegildirek, A., Liu, K., Member, S.: Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. 7(2), 388–399 (1996)

    Article  Google Scholar 

  9. Lewis, F., Jagannathan, S., Yesildirak, A.: Neural Network Control of Robot Manipulators and Non-linear Systems. CRC Press, Boca Raton (1998)

    Google Scholar 

  10. Luca, A., Albu-Schaffer, A., Haddadin, S., Hirzinger, G.: Collision detection and safe reaction with the DLR-III lightweight manipulator arm. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1623–1630. IEEE, October 2006

    Google Scholar 

  11. Martius, G., Hesse, F., Güttler, F., Der, R.: LPZROBOTS: a free and powerful robot simulator (2010). http://robot.informatik.uni-leipzig.de/software

  12. Miller, W.T., Werbos, P.J., Sutton, R.S.: Neural Networks for Control. MIT Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  13. Omidvar, O., Elliott, D.L.: Neural Systems for Control. Elsevier, Amsterdam (1997)

    Google Scholar 

  14. Schiavi, R., Grioli, G., Sen, S., Bicchi, A.: VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. In: 2008 IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 2171–2176. IEEE (2008)

    Google Scholar 

  15. Selmic, R.R., Lewis, F.L.: Neural-network approximation of piecewise continuous functions: application to friction compensation. IEEE Trans. Neural Netw. 13(3), 745–751 (2002)

    Article  Google Scholar 

  16. Sisbot, E.A., Marin-Urias, L.F., Alami, R., Simeon, T.: A human aware mobile robot motion planner. IEEE Trans. Robot. 23(5), 874–883 (2007)

    Article  Google Scholar 

  17. Spall, J.C., Cristion, J.A.: Model-free control of nonlinear stochastic systems with discrete-time measurements. IEEE Trans. Autom. Control 43(9), 1198–1210 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tonietti, G., Schiavi, R., Bicchi, A.: Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction. In: 2005 Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 526–531. IEEE (2005)

    Google Scholar 

  19. Xiong, X., Wörgötter, F., Manoonpong, P.: Neuromechanical control for hexapedal robot walking on challenging surfaces and surface classification. Robot. Auton. Syst. 62(12), 1777–1789 (2014)

    Article  Google Scholar 

  20. Xiong, X., Wörgötter, F., Manoonpong, P.: Virtual agonist-antagonist mechanisms produce biological muscle-like functions: an application for robot joint control. Ind. Robot Int. J. 41(4), 340–346 (2014)

    Article  Google Scholar 

  21. Yang, W., Hammoudi, N., Herrmann, G., Lowenberg, M., Chen, X.: Dynamic gain-scheduled control and extended linearisation: extensions, explicit formulae and stability. Int. J. Control 88(1), 163–179 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poramate Manoonpong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jankovics, V., Mátéfi-Tempfli, S., Manoonpong, P. (2016). Artificial Neural Network Based Compliant Control for Robot Arms. In: Tuci, E., Giagkos, A., Wilson, M., Hallam, J. (eds) From Animals to Animats 14. SAB 2016. Lecture Notes in Computer Science(), vol 9825. Springer, Cham. https://doi.org/10.1007/978-3-319-43488-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43488-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43487-2

  • Online ISBN: 978-3-319-43488-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics