Skip to main content

Evolving Controllers for Robots with Multimodal Locomotion

  • Conference paper
  • First Online:
  • 1185 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9825))

Abstract

Animals have inspired numerous studies on robot locomotion, but the problem of how autonomous robots can learn to take advantage of multimodal locomotion remains largely unexplored. In this paper, we study how a robot with two different means of locomotion can effective learn when to use each one based only on the limited information it can obtain through its onboard sensors. We conduct a series of simulation-based experiments using a task where a wheeled robot capable of jumping has to navigate to a target destination as quickly as possible in environments containing obstacles. We apply evolutionary techniques to synthesize neural controllers for the robot, and we analyze the evolved behaviors. The results show that the robot succeeds in learning when to drive and when to jump. The results also show that, compared with unimodal locomotion, multimodal locomotion allows for simpler and higher performing behaviors to evolve.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Parrot MiniDrone Jumping Sumo, URL: http://www.parrot.com/usa/products/jumping-sumo/.

References

  1. Bachmann, R.J., Boria, F.J., Vaidyanathan, R., Ifju, P.G., Quinn, R.D.: A biologically inspired micro-vehicle capable of aerial and terrestrial locomotion. Mech. Mach. Theor. 44(3), 513–526 (2009)

    Article  MATH  Google Scholar 

  2. Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive behavior. Adapt. Behav. 1(1), 91–122 (1992)

    Article  Google Scholar 

  3. Crespi, A., Karakasiliotis, K., Guignard, A., Ijspeert, A.J.: Salamandra robotica II: an amphibious robot to study salamander-like swimming and walking gaits. IEEE Trans. Rob. 29(2), 308–320 (2013)

    Article  Google Scholar 

  4. Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S.M., Christensen, A.L.: Evolution of collective behaviors for a real swarm of aquatic surface robots. PLoS ONE 11(3), e0151834 (2016)

    Article  Google Scholar 

  5. Duarte, M., Silva, F., Rodrigues, T., Oliveira, S.M., Christensen, A.L.: JBotEvolver: a versatile simulation platform for evolutionary robotics. In: International Conference on the Synthesis and Simulation of Living Systems (ALIFE), pp. 210–211. MIT Press (2014)

    Google Scholar 

  6. Floreano, D., Mondada, F.: Evolution of homing navigation in a real mobile robot. IEEE Trans. Syst. Man Cybern. Part B Cybern. 26(3), 396–407 (1996)

    Article  Google Scholar 

  7. Gallagher, J.C., Beer, R.D., Espenschied, K.S., Quinn, R.D.: Application of evolved locomotion controllers to a hexapod robot. Rob. Auton. Syst. 19(1), 95–103 (1996)

    Article  Google Scholar 

  8. Georgiades, C., German, A., Hogue, A., Liu, H., Prahacs, C., Ripsman, A., Sim, R., Torres, L.A., Zhang, P., Buehler, M., et al.: AQUA: an aquatic walking robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 4, pp. 3525–3531. IEEE Press (2004)

    Google Scholar 

  9. Gruau, F., Quatramaran, K.: Cellular encoding for interactive evolutionary robotics. In: European Conference on Artificial Life (ECAL), pp. 368–377. MIT Press (1997)

    Google Scholar 

  10. Ijspeert, A.J.: Biorobotics: using robots to emulate and investigate agile locomotion. Science 346(6206), 196–203 (2014)

    Article  Google Scholar 

  11. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  12. Jakobi, N.: Minimal simulations for evolutionary robotics. Ph.D. thesis, University of Sussex (1998)

    Google Scholar 

  13. Lambrecht, B.G., Horchler, A.D., Quinn, R.D.: A small, insect-inspired robot that runs and jumps. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1240–1245. IEEE Press (2005)

    Google Scholar 

  14. Lock, R., Burgess, S., Vaidyanathan, R.: Multi-modal locomotion: from animal to application. Bioinspiration Biomimetics 9(1), 011001 (2013)

    Article  Google Scholar 

  15. Low, K., Hu, T., Mohammed, S., Tangorra, J., Kovac, M.: Perspectives on biologically inspired hybrid and multi-modal locomotion. Bioinspiration Biomimetics 10(2), 020301 (2015)

    Article  Google Scholar 

  16. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-organizing Machines. MIT Press, Massachusetts (2000)

    Google Scholar 

  17. Peterson, K., Fearing, R.S.: Experimental dynamics of wing assisted running for a bipedal ornithopter. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5080–5086. IEEE Press (2011)

    Google Scholar 

  18. Stoeter, S.A., Papanikolopoulos, N.: Autonomous stair-climbing with miniature jumping robots. IEEE Trans. Sys. Man Cybern. Part B: Cybern. 35(2), 313–325 (2005)

    Article  Google Scholar 

  19. Tsukagoshi, H., Sasaki, M., Kitagawa, A., Tanaka, T.: Design of a higher jumping rescue robot with the optimized pneumatic drive. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1276–1283. IEEE Press (2005)

    Google Scholar 

  20. Woodward, M.A., Sitti, M.: Multimo-bat: a biologically inspired integrated jumping-gliding robot. Int. J. Robot. Res. 33(12), 1511–1529 (2014)

    Article  Google Scholar 

  21. Zufferey, J.-C., Floreano, D., van Leeuwen, M., Merenda, T.: Evolving vision-based flying robots. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 592–600. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support of ISCTE-IUL. Also, this work was partly supported by FCT – Foundation of Science and Technology under grant UID/EEA/50008/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ramos, R., Duarte, M., Oliveira, S.M., Christensen, A.L. (2016). Evolving Controllers for Robots with Multimodal Locomotion. In: Tuci, E., Giagkos, A., Wilson, M., Hallam, J. (eds) From Animals to Animats 14. SAB 2016. Lecture Notes in Computer Science(), vol 9825. Springer, Cham. https://doi.org/10.1007/978-3-319-43488-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43488-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43487-2

  • Online ISBN: 978-3-319-43488-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics