Skip to main content

Understanding Mechanism of Fungus Mediated Nanosynthesis: A Molecular Approach

  • Chapter
  • First Online:
Advances and Applications Through Fungal Nanobiotechnology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The chapter details different processes of biosynthesis of inorganic (metallic and oxide) nanoparticles mediated by the different members of fungi. The biosynthetic mechanism (at molecular level) has been discussed in detail. The nanosynthesis is broadly dependent upon the modulation of key parameters like temperature, pH and other medium conditions. It is conclusively found that although, the cellular level organization matters along with their metabolic fluxes/signal transduction pathways, it is the different stress shearing cues at different levels (ranging from cell wall to nucleus) that bestows a unique echelon to an individual genera in the phylogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamis PD, Mannarino SC, Riger CJ, Duarte G, Cruz A, Pereira MD, Eleutherio EC (2009) Lap4, a vacuolar aminopeptidase I, is involved in cadmium-glutathione metabolism. Biometals 22:243–249

    Article  CAS  PubMed  Google Scholar 

  • Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63:1231–1234

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Col Surf B Biointerfaces 28:313–318

    Article  CAS  Google Scholar 

  • Avery SV (2001) Metal toxicity in yeasts and the role of oxidative stress. Adv Appl Microbiol 49:111–142

    Article  CAS  PubMed  Google Scholar 

  • Avery AM, Avery SV (2001) Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 276:33730–33735

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Col Surf B Biointerfaces 68:88–92

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589

    Article  CAS  Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170

    Article  CAS  Google Scholar 

  • Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Col Surf B Biointerfaces 47:160–164

    Article  CAS  Google Scholar 

  • Bhambure R, Bule M, Shaligram NS, Kamat M, Singhal R (2009) Extracellular biosynthesis of gold nanoparticles using Aspergillus niger–its characterization and stability. Chem Eng Technol 32:1036–1041

    Article  CAS  Google Scholar 

  • Breierová E, Vajczikova I, Sasinkova V, Stratilova E, Fisera M, Gregor T, Sajbidor J (2002) Biosorption of cadmium ions by different yeast species. Z Naturforsch C 57:634–639

    Article  PubMed  Google Scholar 

  • Breierová E, Gregor T, Juršíková P, Stratilová E, Fišera M (2004) The role of pullulan and pectin in the uptake of Cd2+ and Ni2+ ions by Aureobasidium pullulans. Ann Microbiol 54:247–255

    Google Scholar 

  • Bun-ya M, Harashima S, Oshima Y (1992) Putative GTP-binding protein, Gtr1, associated with the function of the Pho84 inorganic phosphate transporter in Saccharomyces cerevisiae. Mol Cell Biol 12:2958–2966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bun-ya M, Shikata K, Nakade S, Yompakdee C, Harashima S, Oshima Y (1996) Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr Genet 29:344–351

    CAS  PubMed  Google Scholar 

  • Butt TR, Ecker DJ (1987) Yeast metallothionein and applications in biotechnology. Microbiol Rev 51:351–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Čertik M, Breierová E, Juršíková P (2005) Effect of cadmium on lipid composition of Aureobasidium pullulans grown with added extracellular polysaccharides. Int Biodeter Biodegr 55:195–202

    Article  CAS  Google Scholar 

  • Chae HZ, Chung SJ, Rhee SG (1994) Thioredoxin dependent peroxide reductase from yeast. J Biol Chem 269:27670–27678

    CAS  PubMed  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583

    Article  CAS  PubMed  Google Scholar 

  • Cherian G, Chan H (1993) Biological roles and medical implications. In: Suzuki KT, Imura N, Kimura M (eds) Metallothionein III. Birkhäuser, Basel

    Google Scholar 

  • Choi JH, Lou W, Vancura A (1998) A novel membranebound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J Biol Chem 273:29915–29922

    Article  CAS  PubMed  Google Scholar 

  • Clausen CA, Green F (2003) Oxalic acid overproduction by copper-tolerant brown rot basidiomycetes on southern yellow pine treated with copper-based preservatives. Int Biodeter Biodegr 51:139–144

    Article  CAS  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolrance to toxic metals by a gene family of phytochelatin synthase from plants and yeast. EMBO J 18:3325–3333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160

    Article  CAS  PubMed  Google Scholar 

  • Culotta VC, Yang M, O’Halloran TV (2006) Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 1763:747–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham DP, Lundie LL (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dameron CT, Winge DR (1990) Peptide mediated formation of quantum semiconductors. Trends Biotechnol 8:3–6

    Article  CAS  PubMed  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  PubMed  Google Scholar 

  • Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deplanche K, Macaskie LE (2008) Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng 99:1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Deplanche K, Woods RD, Mikheenko IP, Sockett RE, Macaskie LE (2008) Manufacture of stable palladium and gold nanoparticles on native and genetically engineered flagella scaffolds. Biotechnol Bioeng 101:873–880

    Article  CAS  PubMed  Google Scholar 

  • Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9:1165–1170

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8. doi:10.1186/1477-3155-3-8

    Article  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252

    Article  CAS  Google Scholar 

  • Flores CY, Miñán AG, Grillo CA, Salvarezza RC, Vericat C, Schilardi PL (2013) Citrate-capped silver nanoparticles showing good bactericidal effect against both planktonic and sessile bacteria and a low cytotoxicity to osteoblastic cells. ACS Appl Mater Interfaces 5:3149–3159

    Article  CAS  PubMed  Google Scholar 

  • Fortin D, Beveridge TJ (2000) From biology to biotechnology and medical applications. In: Aeuerien E (ed). Biomineralization. Wiley-VCH, Weinheim

    Google Scholar 

  • Gadda G, Fitzpatrick PF (1998) Biochemical and physical characterization of the active FAD-containing form of nitroalkane oxidase from Fusarium oxysporum. Biochem 37:6154–6164

    Article  CAS  Google Scholar 

  • Gan Z (1991) Yeast thioredoxin genes. J Biol Chem 266:1692–1696

    CAS  PubMed  Google Scholar 

  • Garrido EO, Grant CM (2002) Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides. Mol Microbiol 43:993–1003

    Article  CAS  PubMed  Google Scholar 

  • Gharieb MM, Kierans M, Gadd GM (1999) Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction, and volatilization. Mycolog Res 103:299–305

    Article  CAS  Google Scholar 

  • Ghodake G, Lim SR, Lee DS (2013) Casein hydrolytic peptides mediated green synthesis of antibacterial silver nanoparticles. Col Surf B Biointerfaces 108:147–151

    Article  CAS  Google Scholar 

  • González-Chávez M, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  PubMed  CAS  Google Scholar 

  • González-Guerrero,M., AzcónAguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140

    Google Scholar 

  • González-Guerrero M, Benabdellah K, Ferrol N, Azcón-Aguilar C (2009) Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas-functional processes and ecological impacts. Springer, Berlin

    Google Scholar 

  • González-Guerrero M, Benabdellah K, Valderas A, Azcón-Aguilar C, Ferrol N (2010) GintABC1encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices. Mycorrhiza 20:137–146

    Article  PubMed  CAS  Google Scholar 

  • Grant CM, Collinson LP, Roe J-H, Dawes IW (1996a) Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Mol Microbiol 21:171–179

    Article  CAS  PubMed  Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1996b) Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 29:511–515

    Article  CAS  PubMed  Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1996c) Stationary phase induction of GLR1 expression is mediated by the yAP-1 transcriptional protein in Saccharomyces cerevisiae. Mol Microbiol 22:739–774

    Article  CAS  PubMed  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy metal complexing pepetides of higher plants. Science 230:674–676

    Article  CAS  PubMed  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy- metal-binding peptides of plants, are synthesised from glutathione by a specific gamma-glutamylcystein dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants – redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegedűs N, Emri T, Szilágyi J, Zs K, Nagy I, Penninckx MJ, Pócsi I (2007) Effect of heavy metals on the GSH status in different ectomycorrhizal Paxillus involutus strains. World J Microbiol Biotechnol 23:1339–1343

    Article  CAS  Google Scholar 

  • Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ (2003) The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 27:35–64

    Article  CAS  PubMed  Google Scholar 

  • Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966

    CAS  PubMed  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnol 18:105104–105115

    Article  CAS  Google Scholar 

  • Inoue Y, Matsuda T, Sugiyama K-I, Izawa S, Kimura A (1999) Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 274:27002–27009

    Article  CAS  PubMed  Google Scholar 

  • Izawa S, Maeda K, Sugiyama K-I, Mano J, Inoue Y (1999) Thioredoxin derficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae. J Biol Chem 274:28459–28465

    Article  CAS  PubMed  Google Scholar 

  • Jang HH, Lee KO, Chi YH, Jung BG, Park SK (2004) Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117:625–635

    Article  CAS  PubMed  Google Scholar 

  • Jarosz-Wilkołazka A, Gadd GM (2003) Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere 52:541–547

    Article  PubMed  CAS  Google Scholar 

  • Jarosz-Wilkołazka A, Graz M, Braha B, Menge S, Schlosser D, Krauss GJ (2006) Species-specific Cd-stress response in the white rot basidiomycetes Abortiporus biennis and Cerrena unicolor. Biometals 19:39–49

    Article  PubMed  CAS  Google Scholar 

  • Jha AK, Prasad K (2010a) Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets. Biotechnol J 5:285–291

    Article  CAS  PubMed  Google Scholar 

  • Jha AK, Prasad K (2010b) Synthesis of BaTiO3 nanoparticles: A new sustainable green approach. Integrated Ferroelectr 117:49–54

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K (2010c) Understanding biosynthesis of metallic/oxide nanoparticles: a biochemical perspective. In: Kumar SA, Thiagarajan S, Wang S-F (eds) Biocompatible nanomaterials synthesis, characterization and applications. NOVA Sci. Publication, USA

    Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2008a) Synthesis of nickel nanoparticles: bioreduction method. Nanosci Nanotechnol Ind J 2:26–29

    Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2008b) Yeast mediated synthesis of silver nanoparticles. Int J Nanosci Nanotechnol 4:17–21

    Google Scholar 

  • Jha AK, Prasad K, Kumar V, Prasad K (2009a) Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol Prog 25:1476–1479

    Article  CAS  PubMed  Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009b) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43:303–306

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009c) Biosynthesis of Sb2O3 nanoparticles: a low cost green approach. Biotechnol J 4:1582–1585

    Article  CAS  PubMed  Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2010) Synthesis of Gd2O3 nanoparticles using Lactobacillus sp.: a novel green approach. Int J Green Nanotechnol: Phys Chem 2:P31–P38

    Article  Google Scholar 

  • Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts forp-nitrotoluene hydrogenation. Nanotechnol 20:385601

    Article  CAS  Google Scholar 

  • Kagi JHR (1993) Biological roles and medical implications. In: Suzuki KT, Imura N, Kimura M (eds) Metallothionein III. Birkhäuser, Basel

    Google Scholar 

  • Kagi JHR, Schaffer A (1988) Biochemistry of metallothionein. Biochem 27:8509–8515

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62:4411–4413

    Article  CAS  Google Scholar 

  • Karbasian M, Atyabi SM, Siadat SD, Momen SB, Norouzian D (2008) Optimizing nano-silver formation by Fusarium oxysporum PTCC 5115 employing response surface methodology. Am J Agric Biol Sci 3:433–437

    Article  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Col Surf B Biointerfaces 71:133–137

    Article  CAS  Google Scholar 

  • Kondo N, Isobe M, Imai K, Goto T, Murasugi A, Hayashi Y (1983) Structure of cadystin, the unit-peptide of cadmium-binding peptides induced in a fission yeast, schizosaccharomyces pombe. Tetrahedron Lett 24:925–928

    Article  CAS  Google Scholar 

  • Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588

    Article  CAS  PubMed  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnol 14:95

    Article  CAS  Google Scholar 

  • Krolikowska A, Kudelski A, Michota A, Bukowska J (2003) SERS studies on the structure of thioglycolic acid monolayers on silver and gold. Surf Sci 532:227–232

    Article  CAS  Google Scholar 

  • Kuge S, Jones N (1994) YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13:655–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar SA, Peter Y-A, Nadeau JL (2008) Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnol 19:495101

    Article  CAS  Google Scholar 

  • Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, Stasio GD, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Lee BC, Marino SM, Zhang Y, Fomenko DE (2009) Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae. J Biol Chem 284:4354–4364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewinska A, Bartosz G (2007) Protection of yeast lacking the Ure2 protein against the toxicity of heavy metals and hydroperoxides by antioxidants. Free Radic Res 41:580–590

    Article  CAS  PubMed  Google Scholar 

  • Limon-Pacheco J, Gonsebatt ME (2009) The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 674:137–147

    Article  CAS  PubMed  Google Scholar 

  • Liu XF, Culotta VC (1999) Post-translation control of Nramp metal transport in yeast. Role of metal ions and the BSD2 gene. J Biol Chem 274:4863–4868

    Article  CAS  PubMed  Google Scholar 

  • Liu XF, Supek F, Nelson N, Culotta VC (1997) Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J Biol Chem 272:11763–11769

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yang J, Xie J, Luo Z, Jiang J, Yang Y (2013) The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes. Nanoscale 5:3834–3840

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Liu T, Tade M, Wang S, Lib X, Liu S (2014) Less is more, greener microbial synthesis of silver nanoparticles. Enzyme Microbial Technol 67:53–58

    Article  CAS  Google Scholar 

  • López-Barea J, Bárcena JA, Bocanegra JA, Florindo J, García-Alfonso C (1990) Structure, mechanism, functions, and regulatory properties of glutathione reductase. In: Vina J (ed) Glutathione: metabolism and physiological functions. CRC, Boca Raton

    Google Scholar 

  • Luikenhuis S, Dawes IW, Grant CM (1997) The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell 9:1081–1091

    Article  Google Scholar 

  • Haq Manzoor-ul, Rathod V, Singh D, Singh AK, Ninganagouda S, Hiremath J (2015) Dried mushroom Agaricus bisporus mediated synthesis of silver nanoparticles from Bandipora District (Jammu and Kashmir) and their efficacy against methicillin resistant Staphylococcus aureus (MRSA) strains. Nanosci Nanotechnol An Int J 5:1–8

    Google Scholar 

  • Mehra RK, Mulchandani P (1995) Glutathione-mediated transfer of Cu(I) into phytochelatins. Biochem J 307:697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40

    Article  CAS  PubMed  Google Scholar 

  • Mehra RK, Tarbet EB, Gray WR, Winge DR (1988) Metal-specific synthesis of two metallothioneins and gamma-glutamyl peptides in Candida glabrata. Proc Natl Acad Sci USA 85:8815–8819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehra RK, Mulchandani P, Hunter TC (1994) Role of CdS quantum crystallites in cadmium resistance in Candida glabrata. Biochem Biophys Res Commun 200:1193–1200

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671

    Article  PubMed  CAS  Google Scholar 

  • Michiels C, Raes M, Toussaint O, Remacle J (1994) Importance of Se-glutathione peroxidase, catalase, and Cu/ Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 17:235–248

    Article  CAS  PubMed  Google Scholar 

  • Mokhtari N, Daneshpajouh S, Seyedbagheri S, Atashdehghan R, Abdi K, Sarkar S, Minaian S, Shahverdi HR, Shahverdi AR (2009) Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull 44:1415–1421

    Article  CAS  Google Scholar 

  • Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190:1157–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan BA, Veal EA (2007) Functions of typical 2-Cys peroxiredoxins in yeast. Subcell Biochem 44:253–265

    Article  PubMed  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001a) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parishcha R, Ajaykumar PV, Alam M, Sastry M, Kumar R (2001b) Bioreduction of AuCl4-ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed Engl 40:3585–3588

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3:461–463

    Article  CAS  PubMed  Google Scholar 

  • Murasugi A, Wada C, Hayashi Y (1983) Occurrence of acid-labile sulfide in cadmium-binding peptide 1 from fission yeast. J Biochem Tokyo 93:661–664

    CAS  PubMed  Google Scholar 

  • Nagy Z, Montigny C, Leverrier P, Yeh S, Goffeau A, Garrigos M, Falson P (2006) Role of the yeast ABC transporter Yor1p in cadmium detoxification. Biochimie 88:1665–1671

    Article  CAS  PubMed  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Design 2:293–298

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Article  CAS  PubMed  Google Scholar 

  • Okazaki S, Tachibana T, Naganuma A, Mano N, Kuge S (2007) Multistep disulfide bond formation in Yap1 is required for sensing and transduction of H2O2 stress signal. Mol Cell 27:675–688

    Article  CAS  PubMed  Google Scholar 

  • Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728

    Article  CAS  PubMed  Google Scholar 

  • Paraszkiewicz K, Długoński J (2009) Effect of nickel, copper, and zinc on emulsifier production and saturation of cellular fatty acids in the filamentous fungus Curvularia lunata. Int Biodeter Biodegr 63:100–105

    Article  CAS  Google Scholar 

  • Paraszkiewicz K, Frycie A, Słaba M, Długoński J (2007) Enhancement of emulsifier production by Curvularia lunata in cadmium, zinc and lead presence. Biometals 20:797–805

    Article  CAS  PubMed  Google Scholar 

  • Paraszkiewicz K, Bernat P, Naliwajski M, Długoński J (2010) Lipid peroxidation in the fungus Curvularia lunata exposed to nickel. Arch Microbiol 192:135–141

    Article  CAS  PubMed  Google Scholar 

  • Park SG, Cha M-K, Jeong W, Kim I-H (2000) Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J Biol Chem 275:5723–5732

    Article  CAS  PubMed  Google Scholar 

  • Pedrajas JR, Kosmidou E, Miranda-Vizuete A, Gustafsson J-A, Wright APH (1999) Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J Biol Chem 274:6366–6373

    Article  CAS  PubMed  Google Scholar 

  • Perego P, Howell SB (1997) Molecular mechanisms controlling toxic metal ions in yeast. Toxicol Appl Pharmacol 147:312–318

    Article  CAS  PubMed  Google Scholar 

  • Perrone GG, Grant CM, Dawes IW (2005) Genetic and environmental factors influencing GSH homeostasis in Saccharomyces cerevisiae. Mol Biol Cell 16:218–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philip D (2009a) Honey mediated green synthesis of gold nanoparticles. Spectrochim Acta Part A 73:650–653

    Article  CAS  Google Scholar 

  • Philip D (2009b) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A 73:374–381

    Article  CAS  Google Scholar 

  • Pingali KC, Rockstraw DA, Deng S (2005) Silver nanoparticles from ultrasonic spray pyrolysis of aqueous silver nitrate. Aerosol Sci Technol 39:1010–1014

    Article  CAS  Google Scholar 

  • Pócsi I, Prade RA, Penninckx MJ (2004) GSH, altruistic metabolite in fungi. Adv Microb Physiol 49:1–76

    Article  PubMed  CAS  Google Scholar 

  • Poljšak B, Gazdag Z, Jenko-Brinovec Š, Fujs Š, Pesti M, Bélagyi J, Plesničar S, Raspor P (2005) Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach. J Appl Toxicol 25:535–548

    Article  PubMed  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles 963961, doi:10.1155/2014/963961

  • Prasad K, Jha AK (2009) ZnO nanoparticles: synthesis and adsorption study. Nat Sci 1:129–135

    CAS  Google Scholar 

  • Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2:248–250

    Article  CAS  PubMed Central  Google Scholar 

  • Prasad K, Jha AK, Prasad K, Kulkarni AR (2010) Can microbes mediate nano-transformation? Ind J Phys 84:1355–1360

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2015) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol. doi:10.1002/wnan.1363

    Google Scholar 

  • Prévéral S, Gayet L, Moldes C, Hoffmann J, Mounicou S, Gruet A, Reynaud F, Lobinski R, Verbavatz JM, Vavasseur A, Forestier C (2009) A common highly conserved cadmium detoxification mechanism from bacteria to humans: heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter SpHMT1 requires GSH but not metal-chelating phytochelatin peptides. J Biol Chem 284:4936–4943

    Article  PubMed  CAS  Google Scholar 

  • Rand JD, Grant CM (2006) The thioredoxin system protects ribosomes against stress-induced aggregation. Mol Biol Cell 17:387–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109:1141–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19–48

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Sarkar S, Kundu S (2011) Extracellular biosynthesis of silver nanoparticles using the mycorrhhizal mushroom Tricholoma crassum (BERK.) SACC: its antimicrobial activity against pathogenic bacteria and fungus, including multidrug resistant plant and human bacteria. Digest J Nanomater Biostruct 6:1289–1299

    Google Scholar 

  • Reese RN, Winge DR (1988) Sulfide stabilization of the cadmium-gamma-glutamyl peptide complex of Schizosaccharomyces pombe. J Biol Chem 263:12832–12835

    CAS  PubMed  Google Scholar 

  • Roveri A, Maiorino M, Ursini F (1994) Enzymatic and immunological measurements of soluble and membrane-bound phospholipid-hydroperoxide glutathione peroxidases. Methods Enzymol 233:202–212

    Article  CAS  PubMed  Google Scholar 

  • Saifuddin N, Wong CW, Yasumira AAN (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J Chem 6:61–70

    Article  CAS  Google Scholar 

  • Salt DE, Wagner GJ (1993) Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity. J Biol Chem 268:12297–12302

    CAS  PubMed  Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresource Technol 100:501–504

    Article  CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci India 85:162–170

    CAS  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/ glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  CAS  PubMed  Google Scholar 

  • Schlosser D, Höfer C (2002) Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase. Appl Environ Microbiol 68:3514–3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1727

    Article  CAS  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1:517–520

    Article  CAS  PubMed  Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Shanti SS, Karl JD (2006) The significance of amino acids and amino acid derived molecules in plant responses and adaptation to heavy metal stress. J Exp Botany 57:711–726

    Article  Google Scholar 

  • Sharma KG, Mason DL, Liu G, Rea PA, Bachhawat AK, Michaelis S (2002) Localization, regulation, and substrate transport properties of Bpt1p, a Saccharomyces cerevisiae MRP-type ABC transporter. Eukaryotic Cell 1:391–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi ZZ, Osei-Frimpong J, Kala G, Kala SV, Barrios RJ (2000) Glutathione synthesis is essential for mouse development but not for cell growth in culture. Proc Natl Acad Sci USA 97:5101–5106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin HS, Yang HJ, Kim SB, Lee SS (2004) Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitratesolution. J Colloid Interface Sci 274:89–94

    Article  CAS  PubMed  Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    Article  CAS  PubMed  Google Scholar 

  • Song JY, Kwon EY, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33:159–164

    Article  PubMed  CAS  Google Scholar 

  • Southam G, Beveridge TJ (1994) The in vitro formation of placer gold by bacteria. Geochim Cosmochim Acta 58:4527–4530

    Article  CAS  Google Scholar 

  • Srikanth CV, Vats P, Bourbouloux A, Delrot S, Bachhawat AK (2005) Multiple cis-regulatory elements and the yeast sulphur regulatory network are required for the regulation of the yeast GSH transporter, Hgt1p. Curr Genet 47:345–358

    Article  CAS  PubMed  Google Scholar 

  • Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    Article  CAS  PubMed  Google Scholar 

  • Stadtman ER, Moskovitz J, Levine RL (2003) Oxidation of methionine residues of proteins: biological consequences. Antioxid Redox Signal 5:577–582

    Article  CAS  PubMed  Google Scholar 

  • Stephen DW, Jamieson DJ (1997) Amino acid-dependent regulation of the Saccharomyces cerevisiae GSH1 gene by hydrogen peroxide. Mol Microbiol 23:203–210

    Article  CAS  PubMed  Google Scholar 

  • Suman V, Prasad R, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Tamás MJ, Labarre J, Toledano MB, Wysocki R (2005) Mechanisms of toxic metal tolerance in yeast. In: Tamás MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification: from microbes to man. Springer, Heidelberg

    Google Scholar 

  • Tanvir S, Oudet F, Pulvin S, Anderson WA (2012) Coenzyme based synthesis of silver nanocrystals. Enzyme Microb Technol 51:231–236

    Article  CAS  PubMed  Google Scholar 

  • Tripathi AK, Harsh NSK, Gupta N (2007) Fungal treatment of industrial effluents: a mini-review. Life Sci J 4:78–81

    CAS  Google Scholar 

  • Trotter EW, Grant CM (2005) Overlapping roles of the cytoplasmic and mitochondrial redoc regulatory systems in the yeast Saccharomyces cerevisiae. Eukaryot Cell 4:392–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulla AJ, Patrick AWV, Ulla SL, Roger DF (2000) Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations. New Phytologist 146:557–567

    Article  Google Scholar 

  • Valtchev V, Tosheva L (2013) Porous nanosized particles: preparation, properties, and applications. Chem Rev 113:6734–6760

    Article  CAS  PubMed  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) At PCS1, a Phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110–7115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbavatz JM, Vavasseur A, Forestier C (2009) A common highly conserved cadmium detoxification mechanism from bacteria to humans heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter sphmt1 requires glutathione but not metal-chelating phytochelatin peptides. J Biol Chem 284:4936–4943

    Article  PubMed  CAS  Google Scholar 

  • Vesentini D, Dickinson DJ, Murphy RJ (2006) Fungicides affect the production of fungal extracellular mucilaginous material (ECMM) and the peripheral growth unit (PGU) in two woodrotting basidiomycetes. Mycol Res 110:1207–1213

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zuo J, Keil P, Grundmeier G (2007) Comparing the growth of PVD silver nanoparticles on ultra thin fluorocarbon plasma polymer films and self-assembled fluoroalkyl silane monolayers. Nanotechnol 18:265303

    Article  CAS  Google Scholar 

  • Wemmie JA, Szczypka MS, Thiele DJ, Moye-Rowley WS (1994) Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1. J Biol Chem 269:32592–32597

    CAS  PubMed  Google Scholar 

  • Westwater J, McLaren NF, Dormer UH, Jamieson DJ (2002) The adaptive response of Saccharomyces cerevisiae to mercury exposure. Yeast 19:233–239

    Article  CAS  PubMed  Google Scholar 

  • Winkler BS, Orselli SM, Rex TS (1994) The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic Biol Med 17:333–349

    Article  CAS  PubMed  Google Scholar 

  • Wong CM, Siu KL, Jin DY (2004) Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J Biol Chem 22:23207–23213

    Article  CAS  Google Scholar 

  • Wood ZA, Schroder E, Harris JR, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sc 28:32–40

    Article  CAS  Google Scholar 

  • Wright SF, Franke-Snyder M, Morton JB, Upadhyaya A (1996) Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193–203

    Article  CAS  Google Scholar 

  • Wu AL, Moye-Rowley WS (1994) GSH1, which encodes γ-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation. Mol Cell Biol 14:5832–5839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wysocki R, Tamás MJ (2010) How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 34:925–951

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Lee JY, Wang DIC, Ting YP (2007) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1:429–439

    Article  CAS  PubMed  Google Scholar 

  • Yompakdee C, Bun-ya M, Shikata K, Ogawa N, Harashima S, Oshima Y (1996) A putative new membrane protein, Pho86p, in the inorganic phosphate uptake system of Saccharomyces cerevisiae. Gene 171:41–47

    Article  CAS  PubMed  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants-a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jha, A.K., Prasad, K. (2016). Understanding Mechanism of Fungus Mediated Nanosynthesis: A Molecular Approach. In: Prasad, R. (eds) Advances and Applications Through Fungal Nanobiotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-42990-8_1

Download citation

Publish with us

Policies and ethics