Skip to main content

Online Background-Subtraction with Motion Compensation for Freely Moving Camera

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9772))

Abstract

This paper proposes a background subtraction method for moving camera. The method relies on motion compensation to transfers the background model from the previous frame to the current frame. This motion compensation is carried out using homography transformation where the homography matrix is estimated from the set of point correspondences between previous and current frame. In order to achieve a fast processing speed, optical-flows from grid-based key-points are calculated to define the point correspondences. The background segmentation itself consists of 3 components: background model, candidate background model, and candidate age. Those 3 parameters are used to define the stable pixels which are considered as the background pixels. The proposed method was tested on a public benchmark system and achieved promising result as shown in the experimental report. Moreover, the method is able to work on real time with 56 fps of processing speed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://changedetection.net/.

References

  1. Wahyono, Filonenko, A., Jo, K.H., et al.: Detecting abandoned objects in crowded scenes of surveillance videos using adaptive dual background model. In: 2015 8th International Conference on Human System Interactions (HSI), pp. 224–227. IEEE (2015)

    Google Scholar 

  2. Wahyono, Filonenko, A., Jo, K.H., et al.: Illegally parked vehicle detection using adaptive dual background model. In: IECON 2015 - 41st Annual Conference of the Industrial Electronics Society, pp. 002225–002228 (2015)

    Google Scholar 

  3. St-Charles, P.L., Bilodeau, G.A., Bergevin, R.: Subsense: a universal change detection method with local adaptive sensitivity. IEEE Trans. Image Process. 24(1), 359–373 (2015)

    Article  MathSciNet  Google Scholar 

  4. St-Charles, P.L., Bilodeau, G.A., Bergevin, R.: A self-adjusting approach to change detection based on background word consensus. In: 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 990–997. IEEE (2015)

    Google Scholar 

  5. Kim, S.W., Yun, K., Yi, K.M., Kim, S.J., Choi, J.Y.: Detection of moving objects with a moving camera using non-panoramic background model. Mach. Vis. Appl. 24(5), 1015–1028 (2013)

    Article  Google Scholar 

  6. Yi, K., Yun, K., Kim, S., Chang, H., Choi, J.: Detection of moving objects with non-stationary cameras in 5.8 ms: bringing motion detection to your mobile device. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 27–34 (2013)

    Google Scholar 

  7. Yun, K., Choi, J.Y.: Robust and fast moving object detection in a non-stationary camera via foreground probability based sampling. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 4897–4901. IEEE (2015)

    Google Scholar 

  8. Allebosch, G., Deboeverie, F., Veelaert, P., Philips, W.: EFIC: edge based foreground background segmentation and interior classification for dynamic camera viewpoints. In: Battiato, S. (ed.) ACIVS 2015. LNCS, vol. 9386, pp. 130–141. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25903-1_12

    Chapter  Google Scholar 

  9. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, Citeseer, p. 50 (1988)

    Google Scholar 

  10. Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Smith, S.M., Brady, J.M.: Susana new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)

    Article  Google Scholar 

  12. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  13. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2., pp. 1150–1157. IEEE (1999)

    Google Scholar 

  14. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary Robust Independent Elementary Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision. In: IJCAI, vol. 81, pp. 674–679 (1981)

    Google Scholar 

  17. Maddalena, L., Petrosino, A.: A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection. Neural Comput. Appl. 19(2), 179–186 (2010)

    Article  Google Scholar 

  18. Sajid, H., Cheung, S.C.S.: Background subtraction for static & moving camera. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 4530–4534. IEEE (2015)

    Google Scholar 

  19. Chen, Y., Wang, J., Lu, H.: Learning sharable models for robust background subtraction. In: 2015 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2015)

    Google Scholar 

  20. Gregorio, M., Giordano, M.: Change detection with weightless neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 403–407 (2014)

    Google Scholar 

  21. Varadarajan, S., Miller, P., Zhou, H.: Spatial mixture of gaussians for dynamic background modelling. In: 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 63–68. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Hyun Jo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kurnianggoro, L., Wahyono, Yu, Y., Hernandez, D.C., Jo, KH. (2016). Online Background-Subtraction with Motion Compensation for Freely Moving Camera. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2016. Lecture Notes in Computer Science(), vol 9772. Springer, Cham. https://doi.org/10.1007/978-3-319-42294-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42294-7_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42293-0

  • Online ISBN: 978-3-319-42294-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics