Skip to main content

Oligodendrocytes: Functioning in a Delicate Balance Between High Metabolic Requirements and Oxidative Damage

  • Chapter
  • First Online:
Glial Cells in Health and Disease of the CNS

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 949))

Abstract

The study of the metabolic interactions between myelinating glia and the axons they ensheath has blossomed into an area of research much akin to the elucidation of the role of astrocytes in tripartite synapses (Tsacopoulos and Magistretti in J Neurosci 16:877–885, 1996). Still, unlike astrocytes, rich in cytochrome-P450 and other anti-oxidative defense mechanisms (Minn et al. in Brain Res Brain Res Rev 16:65–82, 1991; Wilson in Can J Physiol Pharmacol. 75:1149–1163, 1997), oligodendrocytes can be easily damaged and are particularly sensitive to both hypoxia and oxidative stress, especially during their terminal differentiation phase and while generating myelin sheaths. In the present review, we will focus in the metabolic complexity of oligodendrocytes, particularly during the processes of differentiation and myelin deposition, and with a specific emphasis in the context of oxidative stress and the intricacies of the iron metabolism of the most iron-loaded cells of the central nervous system (CNS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal S, Yurlova L, Simons M (2011) Central nervous system myelin: structure, synthesis and assembly. Trends Cell Biol 21:585–593

    Article  CAS  PubMed  Google Scholar 

  • Alcazar A, Cid C (2009) High cytotoxic sensitivity of the oligodendrocyte precursor cells to HSP90 inhibitors in cell cultures. Exp Neurol 216:511–514

    Article  CAS  PubMed  Google Scholar 

  • Arosio P, Levi S (2010) Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim Biophys Acta 1800:783–792

    Article  CAS  PubMed  Google Scholar 

  • Baarine M, Andreoletti P, Athias A, Nury T, Zarrouk A, Ragot K, Vejux A, Riedinger JM, Kattan Z, Bessede G, Trompier D, Savary S, Cherkaoui-Malki M, Lizard G (2012) Evidence of oxidative stress in very long chain fatty acid–treated oligodendrocytes and potentialization of ROS production using RNA interference-directed knockdown of ABCD1 and ACOX1 peroxisomal proteins. Neuroscience 213:1–18

    Article  CAS  PubMed  Google Scholar 

  • Back SA, Gan X, Li Y, Rosenberg PA, Volpe JJ (1998) Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci 18:6241–6253

    CAS  PubMed  Google Scholar 

  • Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21:1302–1312

    CAS  PubMed  Google Scholar 

  • Back SA, Luo NL, Mallinson RA, O’Malley JP, Wallen LD, Frei B, Morrow JD, Petito CK, Roberts CT Jr, Murdoch GH, Montine TJ (2005) Selective vulnerability of preterm white matter to oxidative damage defined by F2-isoprostanes. Ann Neurol 58:108–120

    Article  CAS  PubMed  Google Scholar 

  • Badaracco ME, Siri MV, Pasquini JM (2010) Oligodendrogenesis: the role of iron. BioFactors 36:98–102

    CAS  PubMed  Google Scholar 

  • Baes M, Aubourg P (2009) Peroxisomes, myelination, and axonal integrity in the CNS. Neuroscientist 15:367–379

    Article  CAS  PubMed  Google Scholar 

  • Barbarese E, Pfeiffer SE (1981) Developmental regulation of myelin basic protein in dispersed cultures. Proc Natl Acad Sci USA 78:1953–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barres BA, Hart IK, Coles HS, Burne JF, Voyvodic JT, Richardson WD, Raff MC (1992) Cell death in the oligodendrocyte lineage. J Neurobiol 23:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Barres BA, Jacobson MD, Schmid R, Sendtner M, Raff MC (1993) Does oligodendrocyte survival depend on axons? Curr Biol 3:489–497

    Article  CAS  PubMed  Google Scholar 

  • Bauer NG, Richter-Landsberg C, Ffrench-Constant C (2009) Role of the oligodendroglial cytoskeleton in differentiation and myelination. Glia 57:1691–1705

    Google Scholar 

  • Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    CAS  PubMed  Google Scholar 

  • Beard JL, Connor JR (2003) Iron status and neural functioning. Annu Rev Nutr 23:41–58

    Article  CAS  PubMed  Google Scholar 

  • Benkovic SA, Connor JR (1993) Ferritin, transferrin, and iron in selected regions of the adult and aged rat brain. J Comp Neurol 338:97–113

    Article  CAS  PubMed  Google Scholar 

  • Brown AM, Wender R, Ransom BR (2001) Metabolic substrates other than glucose support axon function in central white matter. J Neurosci Res 66:839–843

    Article  CAS  PubMed  Google Scholar 

  • Burdo JR, Menzies SL, Simpson IA, Garrick LM, Garrick MD, Dolan KG, Haile DJ, Beard JL, Connor JR (2001) Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res 66:1198–1207

    Article  CAS  PubMed  Google Scholar 

  • Chrast R, Saher G, Nave KA, Verheijen MH (2011) Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models. J Lipid Res 52:419–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connor JR, Menzies SL (1995) Cellular management of iron in the brain. J Neurol Sci 134(Suppl):33–44

    Article  CAS  PubMed  Google Scholar 

  • Connor JR, Menzies SL (1996) Relationship of iron to oligodendrocytes and myelination. Glia 17:83–93

    Article  CAS  PubMed  Google Scholar 

  • Court FA, Hendriks WT, Macgillavry HD, Alvarez J, van Minnen J (2008) Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J Neurosci 28:11024–11029

    Article  CAS  PubMed  Google Scholar 

  • Dammann O, Leviton A (2004) Inflammatory brain damage in preterm newborns-dry numbers, wet lab, and causal inferences. Early Hum Dev 79:1–15

    Article  PubMed  Google Scholar 

  • Dhaunchak AS, Huang JK, De Faria O Jr, Roth AD, Pedraza L, Antel JP, Bar-Or A, Colman DR (2010) A proteome map of axoglial specializations isolated and purified from human central nervous system. Glia 58:1949–1960

    Article  PubMed  Google Scholar 

  • Dwork AJ, Schon EA, Herbert J (1988) Nonidentical distribution of transferrin and ferric iron in human brain. Neuroscience 27:333–345

    Article  CAS  PubMed  Google Scholar 

  • Edwards AD, Tan S (2006) Perinatal infections, prematurity and brain injury. Curr Opin Pediatr 18:119–124

    Article  PubMed  Google Scholar 

  • El Waly B, Macchi M, Cayre M, Durbec P (2014) Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 8:145

    PubMed  PubMed Central  Google Scholar 

  • Erb GL, Osterbur DL, LeVine SM (1996) The distribution of iron in the brain: a phylogenetic analysis using iron histochemistry. Brain Res Dev Brain Res 93:120–128

    Article  CAS  PubMed  Google Scholar 

  • Espinosa de los Monteros A, Foucaud B (1987) Effect of iron and transferrin on pure oligodendrocytes in culture; characterization of a high-affinity transferrin receptor at different ages. Brain Res 432:123–130

    Google Scholar 

  • Espinosa-Jeffrey A, Wakeman DR, Kim SU, Snyder EY, de Vellis J (2009) Culture system for rodent and human oligodendrocyte specification, lineage progression, and maturation. Curr Protoc Stem Cell Biol Chapter 2:Unit 2D.4

    Google Scholar 

  • Felt BT, Beard JL, Schallert T, Shao J, Aldridge JW, Connor JR, Georgieff MK, Lozoff B (2006) Persistent neurochemical and behavioral abnormalities in adulthood despite early iron supplementation for perinatal iron deficiency anemia in rats. Behav Brain Res 171:261–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ffrench-Constant C, Colognato H, Franklin RJ (2004) Neuroscience. The mysteries of myelin unwrapped. Science 304:688–689

    Google Scholar 

  • Foran DR, Peterson AC (1992) Myelin acquisition in the central nervous system of the mouse revealed by an MBP-Lac Z transgene. J Neurosci 12:4890–4897

    CAS  PubMed  Google Scholar 

  • French HM, Reid M, Mamontov P, Simmons RA, Grinspan JB (2009) Oxidative stress disrupts oligodendrocyte maturation. J Neurosci Res 87:3076–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521

    PubMed  PubMed Central  Google Scholar 

  • Giometto B, Bozza F, Argentiero V, Gallo P, Pagni S, Piccinno MG, Tavolato B (1990) Transferrin receptors in rat central nervous system. An immunocytochemical study. J Neurol Sci 98:81–90

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan G, Awasthi A, Belkaid W, De Faria O Jr, Liazoghli D, Colman DR, Dhaunchak AS (2013) Lipidome and proteome map of myelin membranes. J Neurosci Res 91:321–334

    Article  CAS  PubMed  Google Scholar 

  • Grantham-McGregor S, Ani C (2001) A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr 131:649S–666S; discussion 666S–668S

    Google Scholar 

  • Greisen G, Borch K (2001) White matter injury in the preterm neonate: the role of perfusion. Dev Neurosci 23:209–212

    Article  CAS  PubMed  Google Scholar 

  • Guan JZ, Guan WP, Maeda T, Guoqing X, GuangZhi W, Makino N (2014) Patients with multiple sclerosis show increased oxidative stress markers and somatic telomere length shortening. Mol Cell Biochem 400:183–187

    Article  PubMed  CAS  Google Scholar 

  • Guardia Clausi M, Pasquini LA, Soto EF, Pasquini JM (2010) Apotransferrin-induced recovery after hypoxic/ischaemic injury on myelination. ASN Neuro 2:e00048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hametner S, Wimmer I, Haider L, Pfeifenbring S, Bruck W, Lassmann H (2013) Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 74:848–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartline DK, Colman DR (2007) Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 17:R29–R35

    Article  CAS  PubMed  Google Scholar 

  • Haynes RL, van Leyen K (2013) 12/15-lipoxygenase expression is increased in oligodendrocytes and microglia of periventricular leukomalacia. Dev Neurosci 35:140–154

    CAS  PubMed  Google Scholar 

  • Hill JM, Ruff MR, Weber RJ, Pert CB (1985) Transferrin receptors in rat brain: neuropeptide-like pattern and relationship to iron distribution. Proc Natl Acad Sci USA 82:4553–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirrlinger J, Nave KA (2014) Adapting brain metabolism to myelination and long-range signal transduction. Glia 62:1749–1761

    Article  PubMed  Google Scholar 

  • Hu Y, Chen G, Wan H, Zhang Z, Zhi H, Liu W, Qian X, Chen M, Wen L, Gao F, Li J, Zhao L (2013) A rat pup model of cerebral palsy induced by prenatal inflammation and hypoxia. Neural Regen Res 8:817–824

    PubMed  PubMed Central  Google Scholar 

  • Hulet SW, Heyliger SO, Powers S, Connor JR (2000) Oligodendrocyte progenitor cells internalize ferritin via clathrin-dependent receptor mediated endocytosis. J Neurosci Res 61:52–60

    Article  CAS  PubMed  Google Scholar 

  • Ishii A, Dutta R, Wark GM, Hwang SI, Han DK, Trapp BD, Pfeiffer SE, Bansal R (2009) Human myelin proteome and comparative analysis with mouse myelin. Proc Natl Acad Sci USA 106:14605–14610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn O, Tenzer S, Werner HB (2009) Myelin proteomics: molecular anatomy of an insulating sheath. Mol Neurobiol 40:55–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarjour AA, Manitt C, Moore SW, Thompson KM, Yuh SJ, Kennedy TE (2003) Netrin-1 is a chemorepellent for oligodendrocyte precursor cells in the embryonic spinal cord. J Neurosci 23:3735–3744

    CAS  PubMed  Google Scholar 

  • Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9:173–179

    Article  CAS  PubMed  Google Scholar 

  • Khwaja O, Volpe JJ (2008) Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 93:F153–F161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer EM, Schardt A, Nave KA (2001) Membrane traffic in myelinating oligodendrocytes. Microsc Res Tech 52:656–671

    Article  CAS  PubMed  Google Scholar 

  • Kretchmer N, Beard JL, Carlson S (1996) The role of nutrition in the development of normal cognition. Am J Clin Nutr 63:997S–1001S

    CAS  PubMed  Google Scholar 

  • LeVine SM (1997) Iron deposits in multiple sclerosis and Alzheimer’s disease brains. Brain Res 760:298–303

    Article  CAS  PubMed  Google Scholar 

  • LeVine SM, Macklin WB (1990) Iron-enriched oligodendrocytes: a reexamination of their spatial distribution. J Neurosci Res 26:508–512

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Guan Q, Chen Y, Han H, Liu W, Nie Z (2013) Transferrin receptor and ferritin-H are developmentally regulated in oligodendrocyte lineage cells. Neural Regen Res 8:6–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Lozoff B, Wolf AW, Jimenez E (1996) Iron-deficiency anemia and infant development: effects of extended oral iron therapy. J Pediatr 129:382–389

    Article  CAS  PubMed  Google Scholar 

  • Matute C, Alberdi E, Domercq M, Sanchez-Gomez MV, Perez-Samartin A, Rodriguez-Antigüedad A, Perez-Cerda F (2007) Excitotoxic damage to white matter. J Anat 210:693–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehlhase J, Gieche J, Widmer R, Grune T (2006) Ferritin levels in microglia depend upon activation: modulation by reactive oxygen species. Biochim Biophys Acta 1763:854–859

    Article  CAS  PubMed  Google Scholar 

  • Miller RH, Mi S (2007) Dissecting demyelination. Nat Neurosci 10:1351–1354

    Article  CAS  PubMed  Google Scholar 

  • Minn A, Ghersi-Egea JF, Perrin R, Leininger B, Siest G (1991) Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res Brain Res Rev 16:65–82

    Article  CAS  PubMed  Google Scholar 

  • Mir F, Lee D, Ray H, Sadiq SA (2014) CSF isoprostane levels are a biomarker of oxidative stress in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 1:e21

    Article  PubMed  PubMed Central  Google Scholar 

  • Morland C, Henjum S, Iversen EG, Skrede KK, Hassel B (2007) Evidence for a higher glycolytic than oxidative metabolic activity in white matter of rat brain. Neurochem Int 50:703–709

    Article  CAS  PubMed  Google Scholar 

  • Nave KA (2010) Myelination and the trophic support of long axons. Nat Rev Neurosci 11:275–283

    Article  CAS  PubMed  Google Scholar 

  • Noble M, Murray K, Stroobant P, Waterfield MD, Riddle P (1988) Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature 333:560–562

    Article  CAS  PubMed  Google Scholar 

  • Numasawa-Kuroiwa Y, Okada Y, Shibata S, Kishi N, Akamatsu W, Shoji M, Nakanishi A, Oyama M, Osaka H, Inoue K, Takahashi K, Yamanaka S, Kosaki K, Takahashi T, Okano H (2014) Involvement of ER stress in dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 missense mutations shown by iPSC-derived oligodendrocytes. Stem Cell Reports 2:648–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunez MT, Urrutia P, Mena N, Aguirre P, Tapia V, Salazar J (2012) Iron toxicity in neurodegeneration. Biometals 25:761–776

    Article  CAS  PubMed  Google Scholar 

  • Oshiro S, Kawamura K, Zhang C, Sone T, Morioka MS, Kobayashi S, Nakajima K (2008) Microglia and astroglia prevent oxidative stress-induced neuronal cell death: implications for aceruloplasminemia. Biochim Biophys Acta 1782:109–117

    Article  CAS  PubMed  Google Scholar 

  • Oski FA, Honig AS, Helu B, Howanitz P (1983) Effect of iron therapy on behavior performance in nonanemic, iron-deficient infants. Pediatrics 71:877–880

    CAS  PubMed  Google Scholar 

  • Pasik P, Pasik T (2004) Cajal, Achúcarro, Río Hortega, and the early exploration of Neuroglia. In: Lazzarini RA (ed) Myelin biology and disorders. Elsevier Academic Press, San Diego, pp xxiii–xli

    Google Scholar 

  • Pedraza L, Huang JK, Colman DR (2001) Organizing principles of the axoglial apparatus. Neuron 30:335–344

    Article  CAS  PubMed  Google Scholar 

  • Pedraza L, Huang JK, Colman D (2009) Disposition of axonal caspr with respect to glial cell membranes: implications for the process of myelination. J Neurosci Res 87:3480–3491

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer SE, Warrington AE, Bansal R (1993) The oligodendrocyte and its many cellular processes. Trends Cell Biol 3:191–197

    Article  CAS  PubMed  Google Scholar 

  • Poliak S, Peles E (2003) The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 4:968–980

    Article  CAS  PubMed  Google Scholar 

  • Poliak S, Gollan L, Martinez R, Custer A, Einheber S, Salzer JL, Trimmer JS, Shrager P, Peles E (1999) Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron 24:1037–1047

    Article  CAS  PubMed  Google Scholar 

  • Popko B (2003) Myelin: not just a conduit for conduction. Nat Genet 33:327–328

    Article  CAS  PubMed  Google Scholar 

  • Rasband MN, Trimmer JS, Schwarz TL, Levinson SR, Ellisman MH, Schachner M, Shrager P (1998) Potassium channel distribution, clustering, and function in remyelinating rat axons. J Neurosci 18:36–47

    CAS  PubMed  Google Scholar 

  • Rosenbluth J (1976) Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain. J Neurocytol 5:731–745

    Article  CAS  PubMed  Google Scholar 

  • Roth AD, Ivanova A, Colman DR (2006) New observations on the compact myelin proteome. Neuron Glia Biol 2:15–21

    Article  PubMed  Google Scholar 

  • Rowitch DH, Kriegstein AR (2010) Developmental genetics of vertebrate glial-cell specification. Nature 468:214–222

    Article  CAS  PubMed  Google Scholar 

  • Saher G, Brugger B, Lappe-Siefke C, Mobius W, Tozawa R, Wehr MC, Wieland F, Ishibashi S, Nave KA (2005) High cholesterol level is essential for myelin membrane growth. Nat Neurosci 8:468–475

    CAS  PubMed  Google Scholar 

  • Sauer BM, Schmalstieg WF, Howe CL (2013) Axons are injured by antigen-specific CD8(+) T cells through a MHC class I- and granzyme B-dependent mechanism. Neurobiol Dis 59:194–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sbardella E, Greco A, Stromillo ML, Prosperini L, Puopolo M, Cefaro LA, Pantano P, De Stefano N, Minghetti L, Pozzilli C (2013) Isoprostanes in clinically isolated syndrome and early multiple sclerosis as biomarkers of tissue damage and predictors of clinical course. Mult Scler 19:411–417

    Article  CAS  PubMed  Google Scholar 

  • Schulz K, Vulpe CD, Harris LZ, David S (2014) Iron efflux from oligodendrocytes is differentially regulated in gray and white matter. J Neurosci 31:13301–13311

    Article  CAS  Google Scholar 

  • Silvestroff L, Franco PG, Pasquini JM (2012) ApoTransferrin: dual role on adult subventricular zone-derived neurospheres. PLoS ONE 7:e33937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silvestroff L, Franco PG, Pasquini JM (2013) Neural and oligodendrocyte progenitor cells: transferrin effects on cell proliferation. ASN Neuro 5:e00107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simons M, Trotter J (2007) Wrapping it up: the cell biology of myelination. Curr Opin Neurobiol 17:533–540

    Article  CAS  PubMed  Google Scholar 

  • Smith KJ, Kapoor R, Felts PA (1999) Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol 9:69–92

    Article  CAS  PubMed  Google Scholar 

  • Sow A, Lamant M, Bonny JM, Larvaron P, Piaud O, Lecureuil C, Fontaine I, Saleh MC, Garcia Otin AL, Renou JP, Baron B, Zakin M, Guillou F (2006) Oligodendrocyte differentiation is increased in transferrin transgenic mice. J Neurosci Res 83:403–414

    Article  CAS  PubMed  Google Scholar 

  • Stephenson E, Nathoo N, Mahjoub Y, Dunn JF, Yong VW (2014) Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat Rev Neurol 10:459–468

    Article  CAS  PubMed  Google Scholar 

  • Stiefel KM, Torben-Nielsen B, Coggan JS (2013) Proposed evolutionary changes in the role of myelin. Front Neurosci 7:202

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor CM, Marta CB, Claycomb RJ, Han DK, Rasband MN, Coetzee T, Pfeiffer SE (2004) Proteomic mapping provides powerful insights into functional myelin biology. Proc Natl Acad Sci USA 101:4643–4648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todorich B, Zhang X, Slagle-Webb B, Seaman WE, Connor JR (2008) Tim-2 is the receptor for H-ferritin on oligodendrocytes. J Neurochem 107:1495–1505

    Article  CAS  PubMed  Google Scholar 

  • Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR (2009) Oligodendrocytes and myelination: the role of iron. Glia 57:467–478

    Article  PubMed  Google Scholar 

  • Tomassy GS, Fossati V (2014) How big is the myelinating orchestra? Cellular diversity within the oligodendrocyte lineage: facts and hypotheses. Front Cell Neurosci 8:201

    Article  PubMed  PubMed Central  Google Scholar 

  • Tosic M, Rakic S, Matthieu J, Zecevic N (2002) Identification of Golli and myelin basic proteins in human brain during early development. Glia 37:219–228

    Article  CAS  PubMed  Google Scholar 

  • Toyama BH, Savas JN, Park SK, Harris MS, Ingolia NT, Yates JR 3rd, Hetzer MW (2013) Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154:971–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traka M, Dupree JL, Popko B, Karagogeos D (2002) The neuronal adhesion protein TAG-1 is expressed by Schwann cells and oligodendrocytes and is localized to the juxtaparanodal region of myelinated fibers. J Neurosci 22:3016–3024

    CAS  PubMed  Google Scholar 

  • Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16:877–885

    CAS  PubMed  Google Scholar 

  • van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EA (2005) Antioxidants and polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr 59:1347–1361

    Article  PubMed  CAS  Google Scholar 

  • Volpe JJ (2001) Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 50:553–562

    Article  CAS  PubMed  Google Scholar 

  • Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA (2011) The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci 29:423–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson JX (1997) Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol 75:1149–1163

    Article  CAS  PubMed  Google Scholar 

  • Wilson CH, Hartline DK (2011) Novel organization and development of copepod myelin. ii. nonglial origin. J Comp Neurol 519:3281–3305

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Terakawa S (1999) Fenestration nodes and the wide submyelinic space form the basis for the unusually fast impulse conduction of shrimp myelinated axons. J Exp Biol 202:1979–1989

    CAS  PubMed  Google Scholar 

  • Yuen TJ, Silbereis JC, Griveau A, Chang SM, Daneman R, Fancy SP, Zahed H, Maltepe E, Rowitch DH (2014) Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell 158:383–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Surguladze N, Slagle-Webb B, Cozzi A, Connor JR (2006) Cellular iron status influences the functional relationship between microglia and oligodendrocytes. Glia 54:795–804

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was made possible in part by grant PIA-CONICYT ACT1114 and a support grant 2014 from the Faculty of Science of the University of Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro D. Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Roth, A.D., Núñez, M.T. (2016). Oligodendrocytes: Functioning in a Delicate Balance Between High Metabolic Requirements and Oxidative Damage. In: von Bernhardi, R. (eds) Glial Cells in Health and Disease of the CNS. Advances in Experimental Medicine and Biology, vol 949. Springer, Cham. https://doi.org/10.1007/978-3-319-40764-7_8

Download citation

Publish with us

Policies and ethics