Skip to main content

Development of Nanocellulose-Based Bioinks for 3D Bioprinting of Soft Tissue

  • Living reference work entry
  • First Online:
Book cover 3D Printing and Biofabrication

Abstract

3D bioprinting technology is expected to revolutionize the field of medicine and health care particularly within soft tissue repair and reconstruction. Surgical needs for soft tissue repair include nose, ear, meniscus, and cartilage in joints, as well as repair of damaged nerve tissue, and repair or replacement of damaged skin. 3D bioprinting technology includes a 3D bioprinter, cells, and bioink. Novel bioinks which will be suitable for soft tissue repair need to be developed before 3D bioprinting technology can get into the clinic. Hydrogels and cell-laden hydrogels are very attractive for soft tissue application because of the similarity of mechanical properties and cell environment. The process of design and development of novel bioinks is described in detail in this chapter which includes rheology, printability, cross-linking, long-term stability in medium, cell viability, and stimulation of cells during tissue growth. The commercialization process of bioinks is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams AM, Arruda EM, Larkin LM (2012) Use of adipose-derived stem cells to fabricate scaffoldless tissue-engineered neural conduits in vitro. Neuroscience 201:349–356

    Article  CAS  PubMed  Google Scholar 

  • Administration, U.S.F.a.D. (2012) Guidance for Industry – Pyrogen and Endotoxins Testing: Questions and Answers. U.S.D.o.H.H. Services, Editor. U.S. Food and Drug Administration, Silver Spring, p. 8

    Google Scholar 

  • Ahrem H et al (2014) Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Acta Biomater 10(3):1341–1353

    Article  CAS  PubMed  Google Scholar 

  • Andrade FK et al (2013) Studies on the biocompatibility of bacterial cellulose. J Bioact Compat Polym 28(1):97–112

    Article  CAS  Google Scholar 

  • Baltich J et al (2010) Development of a scaffoldless three-dimensional engineered nerve using a nerve-fibroblast co-culture. In Vitro Cell Dev Biol Anim 46(5):438–444

    Article  PubMed  Google Scholar 

  • Bekkers JE et al (2013) Single-stage cell-based cartilage regeneration using a combination of chondrons and mesenchymal stromal cells: comparison with microfracture. Am J Sports Med 41(9):2158–2166

    Article  PubMed  Google Scholar 

  • Bhattacharya M et al (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164(3):291–298

    Article  CAS  PubMed  Google Scholar 

  • Billiet T et al (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26):6020–6041

    Article  CAS  PubMed  Google Scholar 

  • Brohlin M et al (2009) Characterisation of human mesenchymal stem cells following differentiation into Schwann cell-like cells. Neurosci Res 64(1):41–49

    Article  PubMed  Google Scholar 

  • Brown RM Jr, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci U S A 73(12):4565–4569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos DFD et al (2013) Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. Biofabrication 5(1):015003

    Article  Google Scholar 

  • Catros S et al (2011) Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by Laser-Assisted Bioprinting. Appl Surf Sci 257(12):5142–5147

    Article  CAS  Google Scholar 

  • Chiu DT et al (1988) Comparative electrophysiologic evaluation of nerve grafts and autogenous vein grafts as nerve conduits: an experimental study. J Reconstr Microsurg 4(4):303–309 311–2

    Article  CAS  PubMed  Google Scholar 

  • Colosi C et al (2016) Microfl uidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink. Adv Mater 28(4):677–684

    Article  CAS  PubMed  Google Scholar 

  • Deinema M, Zevenhuizen LPTM (1971) Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Arch Mikrobiol 78(1):42–57

    Article  CAS  PubMed  Google Scholar 

  • Farrell MJ et al (2014) Functional properties of bone marrow-derived MSC-based engineered cartilage are unstable with very long-term in vitro culture. J Biomech 47(9):2173–2182

    Article  PubMed  Google Scholar 

  • Fedorovich NE et al (2009) Evaluation of photocrosslinked Lutrol hydrogel for tissue printing applications. Biomacromolecules 10(7):1689–1696

    Article  CAS  PubMed  Google Scholar 

  • Firmin F, Marchac A (2011) A novel algorithm for autologous ear reconstruction. Semin Plast Surg 25(4):257–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao G et al (2015a) Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J 10(10):1568–1577

    Article  CAS  PubMed  Google Scholar 

  • Gao Q et al (2015b) Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61:203–215

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S et al (2008) Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications. Adv Funct Mater 18:1883–1889

    Article  CAS  Google Scholar 

  • Gilleard O, Segaren N, Healy C (2013) Experience of ReCell in skin cancer reconstruction. Arch Plast Surg 40(5):627–629

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimoldi N et al (2015) Stem cell salvage of injured peripheral nerve. Cell Transplant 24(2):213–222

    PubMed  Google Scholar 

  • Groll J et al (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8(1):013001

    Article  PubMed  Google Scholar 

  • Gruber HE et al (2010) Human adipose-derived mesenchymal stem cells: direction to a phenotype sharing similarities with the disc, gene expression profiling, and coculture with human annulus cells. Tissue Eng Part A 16(9):2843–2860

    Article  CAS  PubMed  Google Scholar 

  • Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29(4):183–190

    Article  CAS  PubMed  Google Scholar 

  • Hadlock TA et al (2001) A new artificial nerve graft containing rolled Schwann cell monolayers. Microsurgery 21(3):96–101

    Article  CAS  PubMed  Google Scholar 

  • Heine H, Rietschel ET, Ulmer AJ (2001) The biology of endotoxin. Mol Biotechnol 19(3):279–296

    Article  CAS  PubMed  Google Scholar 

  • Helenius G et al (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76(2):431–438

    Article  PubMed  Google Scholar 

  • Hendriks J, Riesle J, van Blitterswijk CA (2007) Co-culture in cartilage tissue engineering. J Tissue Eng Regen Med 1(3):170–178

    Article  CAS  PubMed  Google Scholar 

  • Hoffman RM (2006) The pluripotency of hair follicle stem cells. Cell Cycle 5(3):232–233

    Article  CAS  PubMed  Google Scholar 

  • Hold GL, Bryant CE (2011) The molecular basis of lipid a toll-like receptor 4 interactions. In: Bacterial lipopolysaccharides. Springer, Vienna, pp 371–387

    Chapter  Google Scholar 

  • Hu ZC et al (2015) Randomized clinical trial of autologous skin cell suspension combined with skin grafting for chronic wounds. Br J Surg 102(2):e117–e123

    Article  PubMed  Google Scholar 

  • Kang HW et al (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319

    Article  CAS  PubMed  Google Scholar 

  • Khalil S, Sun W (2009) Bioprinting Endothelial Cells With Alginate for 3D Tissue Constructs. J Biomech Eng 131(11):111002–111002

    Article  PubMed  Google Scholar 

  • Koch L et al (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109(7):1855–1863

    Article  CAS  PubMed  Google Scholar 

  • Ladak A et al (2011) Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model. Exp Neurol 228(2):242–252

    Article  CAS  PubMed  Google Scholar 

  • Lee W et al (2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30(8):1587–1595

    Article  CAS  PubMed  Google Scholar 

  • Lee DH et al (2014) Recombinant growth factor mixtures induce cell cycle progression and the upregulation of type I collagen in human skin fibroblasts, resulting in the acceleration of wound healing processes. Int J Mol Med 33(5):1147–1152.

    Google Scholar 

  • Lee V et al (2014) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 20(6):473–484

    Article  CAS  PubMed  Google Scholar 

  • Lindahl A (2015) From gristle to chondrocyte transplantation: treatment of cartilage injuries. Philos Trans R Soc Lond B Biol Sci 370(1680):20140369

    Article  PubMed  PubMed Central  Google Scholar 

  • Luquetti DV, Leoncini E, Mastroiacovo P (2011) Microtia-anotia: a global review of prevalence rates. Birth Defects Res A Clin Mol Teratol 91(9):813–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma B et al (2013) Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture. Osteoarthritis Cartilage 21(4):599–603

    Article  CAS  PubMed  Google Scholar 

  • Malda J et al (2013) 25th anniversary article: Engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028

    Article  CAS  PubMed  Google Scholar 

  • Markstedt K et al (2015) 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496

    Article  CAS  PubMed  Google Scholar 

  • Marga F et al (2012) Toward engineering functional organ modules by additive manufacturing. Biofabrication 4(2):022001

    Article  PubMed  Google Scholar 

  • Martínez Ávila H et al (2014) Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol 98(17):7423–7435

    Article  PubMed  Google Scholar 

  • Martínez Ávila H et al (2015) Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials 44(0):122–133

    Article  PubMed  Google Scholar 

  • Martinez H et al (2012) Mechanical stimulation of fibroblasts in micro-channeled bacterial cellulose scaffolds enhances production of oriented collagen fibers. J Biomed Mater Res A 100(4):948–957

    Article  PubMed  Google Scholar 

  • Martínez Ávila H, Schwarz S, Rotter N, Gatenholm P (2016) 3D bioprinting of human chondrocyte-laden nanocellulose hydrogel for patient-specific auricular cartilage regeneration. Bioprinting.

    Google Scholar 

  • Meek MF, Coert JH (2008) US Food and Drug Administration /Conformit Europe- approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves. Ann Plast Surg 60(4):466–472

    CAS  PubMed  Google Scholar 

  • Meek MF, Varejao AS, Geuna S (2004) Use of skeletal muscle tissue in peripheral nerve repair: review of the literature. Tissue Eng 10(7–8):1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Mello LR et al (1997) Duraplasty with biosynthetic cellulose: an experimental study. J Neurosurg 86(1):143–150

    Article  CAS  PubMed  Google Scholar 

  • Michael S et al (2013) Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One 8(3):e57741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  CAS  PubMed  Google Scholar 

  • Paakko M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  CAS  PubMed  Google Scholar 

  • Pati F et al (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pertile RA et al (2011) Bacterial cellulose: long-term biocompatibility studies. J Biomater Sci Polym Ed 23(10):1339–1354

    Google Scholar 

  • Pescosolido L et al (2011) Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules 12(5):1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Poole CA, Ayad S, Schofield JR (1988) Chondrons from articular cartilage: I. Immunolocalization of type VI collagen in the pericellular capsule of isolated canine tibial chondrons. J Cell Sci 90(Pt 4):635–643

    PubMed  Google Scholar 

  • Rosen CL, Steinberg GK, DeMonte F, Delashaw JB, Lewis SB, Shaffrey ME et al (2011) Results of the prospective, randomized, multicenter clinical trial evaluating a biosynthesized cellulose graft for repair of dural defects. Neurosurgery 69:1093–1103

    Google Scholar 

  • Radtke C et al (2009) Transplantation of olfactory ensheathing cells enhances peripheral nerve regeneration after microsurgical nerve repair. Brain Res 1254:10–17

    Article  CAS  PubMed  Google Scholar 

  • Schiele NR, Chrisey DB, Corr DT (2011) Gelatin-based laser direct-write technique for the precise spatial patterning of cells. Tissue Eng Part C Methods 17(3):289–298

    Article  PubMed  Google Scholar 

  • Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5:293–347

    Article  CAS  PubMed  Google Scholar 

  • Schuurman W et al (2013) Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13(5):551–561

    Article  CAS  PubMed  Google Scholar 

  • Scotti C et al (2013) Engineering of a functional bone organ through endochondral ossification. Proc Natl Acad Sci U S A 110(10):3997–4002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin H, Olsen BD, Khademhosseini A (2012) The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials 33(11):3143–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siemionow M, Brzezicki G (2009) Chapter 8: current techniques and concepts in peripheral nerve repair. Int Rev Neurobiol 87:141–172

    Article  CAS  PubMed  Google Scholar 

  • Skardal A et al (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1(11):792–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steed M et al (2011) Advances in bioengineered conduits for peripheral nerve regeneration. Atlas Oral Maxillofac Surg Clin North Am 19(1):119–130

    Article  PubMed  Google Scholar 

  • Svensson A et al (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26(4):419–431

    Article  CAS  PubMed  Google Scholar 

  • Tang JB, Gu YQ, Song YS (1993) Repair of digital nerve defect with autogenous vein graft during flexor tendon surgery in zone 2. J Hand Surg Br 18(4):449–453

    Article  CAS  PubMed  Google Scholar 

  • Tanzer RC (1959) Total reconstruction of the external ear. Plast Reconstr Surg Transplant Bull 23(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya T et al (2005) Characterization of microglia induced from mouse embryonic stem cells and their migration into the brain parenchyma. J Neuroimmunol 160(1–2):210–218

    Article  CAS  PubMed  Google Scholar 

  • Visser J et al (2013) Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 5(3):035007

    Article  PubMed  Google Scholar 

  • Weng L, Chen X, Chen W (2007) Rheological Characterization of in Situ Crosslinkable Hydrogels Formulated from Oxidized Dextran and N-Carboxyethyl Chitosan. Biomacromolecules 8(4):1109–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, KL (2007) Fever and the host response. In: Williams KL, (ed) Endotoxins. CRC Press, Florida, USA. p. 47–66

    Google Scholar 

  • Wolford LM, Stevao EL (2003) Considerations in nerve repair. Proc (Bayl Univ Med Cent) 16(2):152–156

    Google Scholar 

  • Wu L et al (2011) Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A 17(9–10):1425–1436

    Article  CAS  PubMed  Google Scholar 

  • Zulkifli FH et al (2014) Nanostructured materials from hydroxyethyl cellulose for skin tissue engineering. Carbohydr Polym 114:238–245

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Gatenholm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Gatenholm, P. et al. (2016). Development of Nanocellulose-Based Bioinks for 3D Bioprinting of Soft Tissue. In: Ovsianikov, A., Yoo, J., Mironov, V. (eds) 3D Printing and Biofabrication. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-40498-1_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40498-1_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-40498-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics