Skip to main content

Materials and Surfaces in Microfluidic Biosensors

  • Chapter
  • First Online:
Microfluidics for Biologists

Abstract

Microfluidics is the science of designing, manufacturing, and formulating processes to generate devices that are capable of analyzing small sample volumes, usually in the range of microliters (10−6) to picoliters (10−12). Microfluidic techniques have emerged as a promising alternative to conventional laboratory assays since they allow complete laboratory protocols to be performed on a single chip, merely a few square centimeters in size. Applied microfluidics have a number of significant advantages in biomedical research and in creating clinically useful technologies. For example, microfluidics enable the fabrication of new cost-effective biosensing technologies for clinical diagnostics. This cost decrease observed stems from the small scale of the device’s architecture, which requires reduced sample volumes, processing times, and reagent consumption when compared to conventional methods. At such a small scale, material selection is a crucial part of microfluidic system development as it impacts its processing, functionality, application, and the disposability of the sensor strips and the fluidic manifold. This chapter reviews the most common types of materials that are currently used to fabricate microfluidic devices. Methods used for their fabrication, physical and chemical properties of the materials, and advantages they provide to the biosensor configuration are also summarized. Special consideration was also given to the selection of ideal prototyping materials for specific applications based on their cost, mechanical, and biocompatible properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NIH Fact Sheets—Point-of-care diagnostic testing (n.d.) https://report.nih.gov/nihfactsheets/ViewFactSheet.aspx?csid=112. Accessed 22 Mar 2016

  2. Point-of-Care Diagnostic Market Worth $27.5 Billion by 2018 (n.d.) http://www.prnewswire.com/news-releases/point-of-care-diagnostic-market-worth-275-billion-by-2018-274885521.html. Accessed 22 Mar 2016

  3. Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT (2015) Emerging technologies for next-generation point-of-care testing. Trends Biotechnol 33(11):692–705. doi:10.1016/j.tibtech.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  4. Kaushik A, Vasudev A, Arya SK, Pasha SK, Bhansali S (2014) Recent advances in cortisol sensing technologies for point-of-care application. Biosens Bioelectron 53:499–512. doi:10.1016/j.bios.2013.09.060

    Article  CAS  PubMed  Google Scholar 

  5. Gervais L, de Rooij N, Delamarche E (2011) Microfluidic chips for point-of-care immunodiagnostics. Adv Mater 23:H151–H176. doi:10.1002/adma.201100464

    Article  CAS  PubMed  Google Scholar 

  6. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. doi:10.1038/nature05058

    Article  CAS  PubMed  Google Scholar 

  7. Fong Lei K (2014) Microfluidics in detection science. Royal Society of Chemistry, Cambridge. doi:10.1039/9781849737609

    Google Scholar 

  8. Ren K, Zhou J, Wu H (2013) Materials for microfluidic chip fabrication. Acc Chem Res 46:2396–2406. doi:10.1021/ar300314s

    Article  CAS  PubMed  Google Scholar 

  9. Iliescu C, Taylor H, Avram M, Miao J, Franssila S (2012) A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6:16505–1650516. doi:10.1063/1.3689939

    Article  PubMed  Google Scholar 

  10. Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A (1993) Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261:895–897. doi:10.1126/science.261.5123.895

    Article  CAS  PubMed  Google Scholar 

  11. Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Lüdi H et al (1992) Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. J Chromatogr A 593:253–258. doi:10.1016/0021-9673(92)80293-4

    Article  CAS  Google Scholar 

  12. Tjerkstra RW, De Boer M, Berenschot E, Gardeniers JGE, van den Berg A, Elwenspoek M (1997) Etching technology for microchannels. In: Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. pp 147–152. doi:10.1109/MEMSYS.1997.581790

  13. Wu Z, Chen H, Liu X, Zhang Y, Li D, Huang H (2009) Protein adsorption on poly(N-vinylpyrrolidone)-modified silicon surfaces prepared by surface-initiated atom transfer radical polymerization. Langmuir 25:2900–2906. doi:10.1021/la8037523

    Article  CAS  PubMed  Google Scholar 

  14. Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions, integration, and applications. Chem Rev 113:2550–2583. doi:10.1021/cr300337x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anderson RR, Hu W, Noh JW, Dahlquist WC, Ness SJ, Gustafson TM et al (2011) Transient deflection response in microcantilever array integrated with polydimethylsiloxane (PDMS) microfluidics. Lab Chip 11:2088–2096. doi:10.1039/c1lc20025a

    Article  CAS  PubMed  Google Scholar 

  16. Washburn AL, Gunn LC, Bailey RC (2009) Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators. Anal Chem 81:9499–9506. doi:10.1021/ac902006p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harz S, Schimmelpfennig M, Tse Sum Bui B, Marchyk N, Haupt K, Feller K-H (2011) Fluorescence optical spectrally resolved sensor based on molecularly imprinted polymers and microfluidics. Eng Life Sci 11:559–565. doi:10.1002/elsc.201000222

    Article  CAS  Google Scholar 

  18. Grover WH, Ivester RHC, Jensen EC, Mathies RA (2006) Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. Lab Chip 6:623–631. doi:10.1039/b518362f

    Article  CAS  PubMed  Google Scholar 

  19. Ibanez-Garcia N, Mercader MB, Mendes da Rocha Z, Seabra CA, Góngora-Rubio MR, Chamarro JA (2006) Continuous flow analytical microsystems based on low-temperature co-fired ceramic technology. Integrated potentiometric detection based on solvent polymeric ion-selective electrodes. Anal Chem 78:2985–2992. doi:10.1021/ac051994k

    Article  CAS  PubMed  Google Scholar 

  20. Zhang W, Eitel RE (2012) Biostability of low-temperature co-fired ceramic materials for microfluidic and biomedical devices. Int J Appl Ceram Technol 9:60–66. doi:10.1111/j.1744-7402.2010.02581.x

    Article  Google Scholar 

  21. Fakunle ES, Fritsch I (2010) Low-temperature co-fired ceramic microchannels with individually addressable screen-printed gold electrodes on four walls for self-contained electrochemical immunoassays. Anal Bioanal Chem 398:2605–2615. doi:10.1007/s00216-010-4098-5

    Article  CAS  PubMed  Google Scholar 

  22. Wolfe DB, Qin D, Whitesides GM (2010) Rapid prototyping of microstructures by soft lithography for biotechnology. Methods Mol Biol 583:81–107. doi:10.1007/978-1-60327-106-6_3

    Article  CAS  PubMed  Google Scholar 

  23. Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5:491–502. doi:10.1038/nprot.2009.234

    Article  CAS  PubMed  Google Scholar 

  24. Zhu Q, Trau D (2012) Multiplex detection platform for tumor markers and glucose in serum based on a microfluidic microparticle array. Anal Chim Acta 751:146–154. doi:10.1016/j.aca.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  25. Ziółkowska K, Stelmachowska A, Kwapiszewski R, Chudy M, Dybko A, Brzózka Z (2013) Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip. Biosens Bioelectron 40:68–74. doi:10.1016/j.bios.2012.06.017

    Article  PubMed  Google Scholar 

  26. Wang C-H, Lien K-Y, Hung L-Y, Lei H-Y, Lee G-B (2012) Integrated microfluidic system for the identification and multiple subtyping of influenza viruses by using a molecular diagnostic approach. Microfluid Nanofluid 13:113–123. doi:10.1007/s10404-012-0947-1

    Article  CAS  Google Scholar 

  27. Wang J-H, Cheng L, Wang C-H, Ling W-S, Wang S-W, Lee G-B (2013) An integrated chip capable of performing sample pretreatment and nucleic acid amplification for HIV-1 detection. Biosens Bioelectron 41:484–491. doi:10.1016/j.bios.2012.09.011

    Article  CAS  PubMed  Google Scholar 

  28. Jung H-C, Moon J-H, Baek D-H, Lee J-H, Choi Y-Y, Hong J-S et al (2012) CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring. IEEE Trans Biomed Eng 59:1472–1479. doi:10.1109/TBME.2012.2190288

    Article  PubMed  Google Scholar 

  29. Tsao C-W, DeVoe DL (2008) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluidics 6:1–16. doi:10.1007/s10404-008-0361-x

    Article  Google Scholar 

  30. Tsao CW, Hromada L, Liu J, Kumar P, DeVoe DL (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7:499–505. doi:10.1039/b618901f

    Article  CAS  PubMed  Google Scholar 

  31. Yang W, Sun X, Wang H-Y, Woolley AT (2009) Integrated microfluidic device for serum biomarker quantitation using either standard addition or a calibration curve. Anal Chem 81:8230–8235. doi:10.1021/ac901566s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen D, Mauk M, Qiu X, Liu C, Kim J, Ramprasad S et al (2010) An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids. Biomed Microdevices 12:705–719. doi:10.1007/s10544-010-9423-4

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yu H, Chong ZZ, Tor SB, Liu E, Loh NH (2015) Low temperature and deformation-free bonding of PMMA microfluidic devices with stable hydrophilicity via oxygen plasma treatment and PVA coating. RSC Adv 5:8377–8388. doi:10.1039/C4RA12771D

    Article  CAS  Google Scholar 

  34. Bartolo D, Degré G, Nghe P, Studer V (2008) Microfluidic stickers. Lab Chip 8:274–279. doi:10.1039/b712368j

    Article  CAS  PubMed  Google Scholar 

  35. Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11:1–35. doi:10.1016/0169-409X(93)90025-Y

    Article  CAS  Google Scholar 

  36. Fotin AV, Drobyshev AL, Proudnikov DY, Perov AN, Mirzabekov AD (1998) Parallel thermodynamic analysis of duplexes on oligodeoxyribonucleotide microchips. Nucleic Acids Res 26:1515–1521. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=147416&tool=pmcentrez&rendertype=abstract. Accessed 23 Mar 2016

  37. Pevzner PA, Lysov YP, Khrapko KR, Belyavsky AV, Florentiev VL, Mirzabekov AD (1991) Improved chips for sequencing by hybridization. J Biomol Struct Dyn 9:399–410. doi:10.1080/07391102.1991.10507920

    Article  CAS  PubMed  Google Scholar 

  38. Heo J, Crooks RM (2005) Microfluidic biosensor based on an array of hydrogel-entrapped enzymes. Anal Chem 77:6843–6851. doi:10.1021/ac0507993

    Article  CAS  PubMed  Google Scholar 

  39. Cheng C-J, Chu L-Y, Zhang J, Wang H-D, Wei G (2008) Effect of freeze-drying and rehydrating treatment on the thermo-responsive characteristics of poly(N-isopropylacrylamide) microspheres. Colloid Polym Sci 286:571–577. doi:10.1007/s00396-007-1817-3

    Article  CAS  Google Scholar 

  40. Beebe D, Moore J, Bauer J, Yu Q, Liu R, Devadoss C et al (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590. doi:10.1038/35007047

    Article  CAS  PubMed  Google Scholar 

  41. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed Engl 46:1318–1320. doi:10.1002/anie.200603817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6:11301–1130113. doi:10.1063/1.3687398

    Article  PubMed  Google Scholar 

  43. Delaney JL, Hogan CF, Tian J, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83:1300–1306. doi:10.1021/ac102392t

    Article  CAS  PubMed  Google Scholar 

  44. Chitnis G, Ding Z, Chang C-L, Savran CA, Ziaie B (2011) Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip 11:1161–1165. doi:10.1039/c0lc00512f

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pandiaraj Manickam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manickam, P., Nelson, J., Bhansali, S. (2016). Materials and Surfaces in Microfluidic Biosensors. In: Dixit, C., Kaushik, A. (eds) Microfluidics for Biologists. Springer, Cham. https://doi.org/10.1007/978-3-319-40036-5_6

Download citation

Publish with us

Policies and ethics