Skip to main content

Electrospinning: Current Status and Future Trends

  • Chapter
  • First Online:
Nano-size Polymers

Abstract

With the emerging nanotechnology, nanoscaled materials have drawn much attention to wide research communities for many years. Nanoscaled fibrous materials offer a multitude of fascinating features such as high surface area-to-volume ratio and tuneable porosity, making them attractive for widespread applications. Among different methods for nanofibre fabrication, electrospinning is a simple and versatile process for generating ultrathin fibres from a variety of polymeric materials or composites. This chapter gives a holistic review on current approaches and developments in electrospinning and its future trends in manufacturing advanced materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48:3306–3316

    Article  Google Scholar 

  2. Li H, Ke Y, Hu Y (2006) Polymer nanofibers prepared by template melt extrusion. J Appl Polym Sci 99:1018–1023

    Article  Google Scholar 

  3. Ma PX, Zhang R (1999) Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 46:60–72

    Article  Google Scholar 

  4. Yang Z, Xu B (2007) Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules. J Mater Chem 17:2385–2393

    Article  Google Scholar 

  5. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223

    Article  Google Scholar 

  6. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    Article  Google Scholar 

  7. Baji A, Mai Y-W, Wong S-C, Abtahi M, Chen P (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70:703–718

    Article  Google Scholar 

  8. Chronakis IS (2005) Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review. J Mater Process Technol 167:283–293

    Article  Google Scholar 

  9. Lannutti J, Reneker D, Ma T, Tomasko D, Farson D (2007) Electrospinning for tissue engineering scaffolds. Mat Sci Eng C Mater 27:504–509

    Article  Google Scholar 

  10. Zeng J, Yang L, Liang Q, Zhang X, Guan H, Xu C, Chen X, Jing X (2005) Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J Controlled Release 105:43–51

    Article  Google Scholar 

  11. Kenawy E-R, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE (2002) Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Controlled Release 81:57–64

    Article  Google Scholar 

  12. Khil M-S, Cha D-I, Kim H-Y, Kim I-S, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res Part B 67B:675–679

    Article  Google Scholar 

  13. Gorji M, Jeddi AAA, Gharehaghaji AA (2012) Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications. J Appl Polym Sci 125:4135–4141

    Article  Google Scholar 

  14. Qin X-H, Wang S-Y (2006) Filtration properties of electrospinning nanofibers. J Appl Polym Sci 102:1285–1290

    Article  Google Scholar 

  15. Fong H (2004) Electrospun nylon 6 nanofiber reinforced BIS-GMA/TEGDMA dental restorative composite resins. Polymer 45:2427–2432

    Article  Google Scholar 

  16. Lee SW, Choi SW, Jo SM, Chin BD, Kim DY, Lee KY (2006) Electrochemical properties and cycle performance of electrospun poly(vinylidene fluoride) based fibrous membrane electrolytes for Li-ion polymer battery. J Power Sources 163:41–46

    Article  Google Scholar 

  17. Pinto NJ, Johnson AT, MacDiarmid AG, Mueller CH, Theofylaktos N, Robinson DC, Miranda FA (2003) Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Appl Phys Lett 83(20):4244–4246

    Article  Google Scholar 

  18. Zhang G, Kataphinan W, Teye-Mensah R, Katta P, Khatri L, Evans EA, Chase GG, Ramsier RD, Reneker DH (2005) Electrospun nanofibers for potential space-based applications. Mater Sci Eng B-Adv Funct Solid-State Mater 116(3):353–358

    Article  Google Scholar 

  19. Xiang J, Chu Y, Zhang X, Shen X (2012) Magnetic and microwave absorption properties of electrospun Co0.5Ni0.5 Fe2O4 nanofibers. Appl Surf Sci 263:320–325

    Article  Google Scholar 

  20. Rafiei S, Maghsoodloo S, Noroozi B, Mottaghitalab V, Haghi AK (2013) Mathematical modeling in electrospinning process of nanofibers: a detailed review. Cellulose Chem Technol 47(5–6):323–338

    Google Scholar 

  21. Morton WJ (1902) US patent, 705691

    Google Scholar 

  22. Cooley JF (1902) US patent, 692631

    Google Scholar 

  23. Zeleny J (1914) Phys Rev 3:69–91

    Article  Google Scholar 

  24. Formhals A (1934) US patent, 1975504

    Google Scholar 

  25. Taylor GI (1969) Electrically driven jets. Proc R Soc Lond A Math Phys Sci (1934–1990) 313:453–475

    Google Scholar 

  26. Larrondo L, St John Manley R (1981) Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci Polym Phys Ed 19:909–920

    Google Scholar 

  27. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170

    Article  Google Scholar 

  28. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21

    Article  Google Scholar 

  29. Wang L, Liu X, Hou Z, Li C, Yang P, Cheng Z, Lian H, Lin J (2008) Electrospinning Synthesis and Luminescence Properties of One-Dimensional Zn2SiO4:Mn2+ Microfibers and Microbelts. J Phys Chem C 112:18882–18888

    Article  Google Scholar 

  30. Alves da Silva ML, Martins A, Costa-Pinto AR, Costa P, Faria S, Gomes M, Reis RL, Neves NM (2010) Cartilage tissue engineering using electrospun PCL nanofiber meshes and MSCs. Biomacromolecules 11:3228–3236

    Google Scholar 

  31. Jin Y, Yang D, Kang D, Jiang X (2009) Fabrication of necklace-like structures via electrospinning. Langmuir 26(2):1186–1190

    Article  Google Scholar 

  32. Koombhongse S, Liu W, Reneker DH (2001) Flat polymer ribbons and other shapes by electrospinning. J Polym Sci Part B Polym Phys 39:2598–2606

    Article  Google Scholar 

  33. Nguyen TT, Ghosh C, Hwang SG, Chanunpanich N, Park JS (2012) Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system. Int J Pharm 439:296–306

    Article  Google Scholar 

  34. Dror Y, Salalha W, Avrahami R, Zussman E, Yarin A, Dersch R, Greiner A, Wendorff J (2007) One-step production of polymeric microtubes by co-electrospinning. Small 3:1064–1073

    Article  Google Scholar 

  35. Zhao Y, Cao X, Jiang L (2007) Bio-mimic multichannel microtubes by a facile method. J Am Chem Soc 129:764–765

    Article  Google Scholar 

  36. Agarwal S, Wendorff JH, Greiner A (2009) Progress in the field of electrospinning for tissue engineering applications. Adv Mater 21:3343–3351

    Article  Google Scholar 

  37. Zanin MHA, Cerize NNP, de Oliveira AM (2011) Production of nanofibers by electrospinning technology: overview and application in cosmetics. In: Beck R, Guterres S, Pohlmann A (eds) Nanocosmetics and nanomedicines new approaches for skin Care. Springer, Berlin, pp 311–332

    Chapter  Google Scholar 

  38. Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59(14):1392–1412

    Article  Google Scholar 

  39. Haider S, Al-Zeghayer Y, Ahmed Ali FA, Haider A, Mahmood A, Al-Masry WA, Imran M, Aijaz MO (2013) Highly aligned narrow diameter chitosan electrospun nanofibers. J Polym Res 20(105):1–11

    Google Scholar 

  40. Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong S-D, Roh S, Cho JJ, Park WH, Min B-M (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461

    Article  Google Scholar 

  41. Maleknia L, Rezazadeh Majidi Z (2014) Electrospinning of gelatin nanofiber for biomedical application. Orient J Chem 30(4):2043–2048

    Article  Google Scholar 

  42. Bai S, Han H, Huang X, Xu W, Kaplan DL, Zhu H, Lu Q (2015) Silk scaffolds with tunable mechanical capability for cell differentiation. Acta Biomater 20:22–31

    Article  Google Scholar 

  43. Baker S, Sigley J, Helms CC, Stitzel J, Berry J, Bonin K, Guthold M (2012) The mechanical properties of dry, electrospun fibrinogen fibers. Mater Sci Eng B 32:215–221

    Article  Google Scholar 

  44. Wang X, Zhao H, Turng L-S, Li Q (2013) Crystalline morphology of electrospun poly (ε-caprolactone) (PCL) nanofibers. Ind Eng Chem Res 52:4939–4949

    Article  Google Scholar 

  45. Natarajan L, New J, Dasari A, Yu S, Manan MA (2014) Surface morphology of electrospun PLA fibers: mechanisms of pore formation. RSC Adv 4:44082–44088

    Article  Google Scholar 

  46. Park JC, Ito T, Kim K-O, Kim KW, Kim BS, Khil MS, Kim HY, Kim IS (2010) Electrospun poly (vinyl alcohol) nanofibers: effects of degree of hydrolysis and enhanced water stability. Polym J 42:273–276

    Article  Google Scholar 

  47. Chuangchote S, Sagawa T, Yoshikawa S (2009) Electrospinning of poly(vinyl pyrrolidone): effects of solvents on electrospinnability for the fabrication of poly(p-phenylene vinylene) and TiO2 nanofibers. J Appl Polym Sci 114:2777–2791

    Article  Google Scholar 

  48. Wang R, Liu Y, Li B, Hsiao BS, Chu B (2012) Electrospun nanofibrous membranes for high flux microfiltration. J Membr Sci 392–393:167–174

    Article  Google Scholar 

  49. Zhang H, Zhang L, Jia Q, Shi C, Yang J (2015) Preparation of porous nylon 6 fiber via electrospinning. Polym Eng Sci 55(5):1133–1141

    Article  Google Scholar 

  50. Veleirinho B, Lopes-da-Silva JA (2009) Application of electrospun poly (ethylene terephthalate) nanofiber mat to apple juice clarification. Process Biochem 44:353–356

    Article  Google Scholar 

  51. Vlad S, Ciobanu C, Macocinschi D, Filip D, Butnaru M, Gradinaru LM, Nistor A (2010) Polyurethane nanofibers by electrospinning for biomedical applications. CAS Proc 2:353–356

    Google Scholar 

  52. Chisca S, Irina Barzic A, Sava I, Olaru N, Bruma M (2012) Morphological and rheological insights on polyimide chain entanglements for electrospinning produced fibers. J Phys Chem B 116:9082–9088

    Google Scholar 

  53. Xu C, Xu F, Wang B, Lu T (2011) Electrospinning of poly(ethylene-co-vinyl-alcohol) nanofibres encapsulated with Ag nanoparticles for wound healing. J Nanomater 2011, Article ID 201834

    Google Scholar 

  54. Han SO, Youk JH, Min KD, Kang YO, Park WH (2008) Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: effects of solvent composition on the fiber diameter. Mater Lett 62:759–762

    Article  Google Scholar 

  55. Boland ED, Wnek GE, Simpson DG, Pawlowski KJ, Bowlin GL (2001) Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning. J Macromol Sci Pure 38:1231–1243

    Article  Google Scholar 

  56. Gensheimer M, Becker M, Heep AB, Wendorff LH, Thauer RK, Greiner A (2007) Novel biohybrid materials by electrospinning: nanofibers of poly(ethylene oxide) and living bacteria. Adv Mater 19:2480–2482

    Article  Google Scholar 

  57. Fang J, Zhang L, Sutton D, Wang X, Lin T (2012) Needleless melt-electrospinning of polypropylene nanofibres. J Nanomater 2012, Article ID 382639

    Google Scholar 

  58. Wang X, Niu H, Lin T (2009) Needleless electrospinning of nanofibers with a conical wire coil. Polym Eng Sci 49:1582–1586

    Article  Google Scholar 

  59. Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L (2011) Recent advances in nanofibre fabrication techniques. Text Res J 82(2):129–147

    Article  Google Scholar 

  60. Hunley MT, Karikari AS, McKee MG, Mather BD, Layman JM, Fornof AR, Long TE (2008) Taking advantage of tailored electrostatics and complementary hydrogen bonding in the design of nanostructures for biomedical applications. Macromol Symp 270:1–7

    Article  Google Scholar 

  61. Tian S, Ogata N, Shimada N, Nakane K, Ogihara T, Yu M (2009) Melt electrospinning from poly(L-lactide) rods coated with poly(ethylene-co-vinyl alcohol). J Appl Polym Sci 113:1282–1288

    Article  Google Scholar 

  62. Hutmacher DW, Dalton PD (2011) Melt electrospinning. Chem Asian J 6(1):44–56

    Article  Google Scholar 

  63. Muerza-Cascante ML, Haylock D, Hutmacher DW, Dalton PD (2015) Melt electrospinning and its technologization in tissue engineering. Tissue Eng Part B Rev 21(2):187–202

    Article  Google Scholar 

  64. Farrugia BL, Brown TD, Upton Z, Hutmacher DW, Dalton PD, Dargaville TR (2013) Dermal fibroblast infiltration of poly (ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication 5:025001

    Article  Google Scholar 

  65. Li H, Chen H, Zhong X, Wu W, Ding Y, Yang W (2014) Interjet distance in needleless melt differential electrospinning with umbellate nozzles. J Appl Polym Sci 131:40515

    Google Scholar 

  66. Zhmayev E, Cho D, Joo YL (2010) Nanofibers from gas assisted polymer melt electrospinning. Polymer 51:4140–4144

    Article  Google Scholar 

  67. Ogata N, Shimada N, Yamaguchi S, Nakane K, Ogihara T (2007) Melt-electrospinning of poly(ethylene terephthalate) and polyalirate. J Appl Polym Sci 105:1127–1132

    Article  Google Scholar 

  68. Nayak R, Kyratzis IL, Truong YB, Padhye R, Arnold L (2012) Melt-electrospinning of polypropylene with conductive additives. J Mater Sci 47:6387–6396

    Article  Google Scholar 

  69. Lyons J, Li C, Ko F (2004) Melt-electrospinning part I: processing parameters and geometric properties. Polymer 45:7597–7603

    Article  Google Scholar 

  70. Detta N, Brown TD, Edin FK, Albrecht K, Chiellini F, Chiellini E, Dalton PD, Hutmacher DW (2010) Melt electrospinning of polycaprolactone and its blends with poly(ethylene glycol). Polym Int 59:1558–1562

    Article  Google Scholar 

  71. Góra A, Sahay R, Thavasi V, Ramakrishna S (2011) Melt-electrospun fibers for advances in biomedical engineering, clean energy, filtration, and separation. Polym Rev 51:265–287

    Article  Google Scholar 

  72. Dalton P, Grafahrend D, Klinkhammer K, Klee D, Moller M (2007) Electrospinning of polymer melts: phenomenological observations. Polymer 48:6823–6833

    Article  Google Scholar 

  73. Yoon YI, Park KE, Lee SJ, Park WH (2013) Fabrication of microfibrous and nano-/microfibrous scaffolds: melt and hybrid electrospinning and surface modification of poly(L-lactic acid) with plasticizer. Biomed Res Int 2013:30904

    Google Scholar 

  74. Chen Z, He J, Zhao F, Liu Y, Liu Y, Yuan H (2014) Effect of polar additives on melt electrospinning of non-polar polypropylene. J Serb Chem Soc 79:587–596

    Article  Google Scholar 

  75. Hochleitner G, Jungst T, Brown TD, Hahn K, Moseke C, Jakob F, Dalton PD, Groll J (2015) Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication 7:035002

    Article  Google Scholar 

  76. Brown TD, Edin F, Detta N, Skelton AD, Hutmacher DW, Dalton PD (2014) Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing. Mater Sci Eng C 45:698–708

    Article  Google Scholar 

  77. Zhou H, Green TB, Joo YL (2006) The thermal effects on electrospinning of polylactic acid melts. Polymer 47:7497–7505

    Article  Google Scholar 

  78. Ko J, Mohtaram NK, Lee PCD, Willerth SM, Jun MB (2013) Parametric studies of melt electrospinning poly-e-(caprolactone) fibers for tissue engineering applications. In: 8th ICOMM, 25–28 March 2013, pp 526–531

    Google Scholar 

  79. Lin T (2012) Needleless Electrospinning: a practical way to mass production of nanofibers. J Textile Sci Eng 2(6):1–3

    Article  Google Scholar 

  80. Simm W, Gosling C, Bonart R, Falkai BV (1979) US patent, 4143196

    Google Scholar 

  81. Jirsak O, Sanetrnik F, Lukas D, Kotek V, Martinova L, Chaloupek J (2005) WO 2005/024101 A1

    Google Scholar 

  82. Yarin A, Zussman E (2004) Upward needleless electrospinning of multiple nanofibers. Polymer 45:2977–2980

    Article  Google Scholar 

  83. Thoppey NM, Bochinski JR, Clarke LI, Gorga RE (2011) Edge electrospinning for high throughput production of quality nanofibers. Nanotechnology 22:345301

    Article  Google Scholar 

  84. Thoppey NM, Bochinski JR, Clarke LI, Gorga RE (2010) Unconfined fluid electrospun into high quality nanofibers from a plate edge. Polymer 51:4928–4936

    Article  Google Scholar 

  85. Tang S, Zeng Y, Wang X (2010) Splashing needleless electrospinning of nanofibers 50:2252–2257

    Google Scholar 

  86. Lu B, Wang Y, Liu Y, Duan H, Zhou J, Zhang Z, Wang Y, Li X, Wang W, Lan W, Xie E (2010) Superhigh-throughput needleless electrospinning using a rotary cone as spinneret. Small 6:1612–1616

    Article  Google Scholar 

  87. Niu H, Lin T (2012) Fiber generators in needleless electrospinning. J Nanomater 2012, Article ID 725950

    Google Scholar 

  88. Green TB, King SL, Li L (2011) US 2011/0223330 A1

    Google Scholar 

  89. Liu Y, He JH (2007) Bubble electrospinning for mass production of nanofibers. Int J Nonlinear Sci Numer Simul 8:393–396

    Google Scholar 

  90. Yang R, He J, Xu L, Yu J (2009) Bubble-electrospinning for fabricating nanofibers. Polymer 50:5846–5850

    Article  Google Scholar 

  91. Liu Y, Ren Z-F, He J-H (2010) Bubble electrospinning method for preparation of aligned nanofibre mat. Mater Sci Technol 26:1309–1312

    Article  Google Scholar 

  92. Liu Y, Dong L, Fan J, Wang R, Yu JY (2011) Effect of applied voltage on diameter and morphology of ultrafine fibers in bubble electrospinning. J Appl Polym Sci 120:592–598

    Article  Google Scholar 

  93. Wu D, Huang X, Lai X, Sun D, Lin L (2010) High throughput tip-less electrospinning via a circular cylindrical electrode. J Nanosci Nanotechnol 10:4221–4226

    Article  Google Scholar 

  94. Wang X, Hu XW, Qiu XC, Huang X, Wu D, Sun D (2013) An improved tip-less electrospinning with strip-distributed solution delivery for massive production of uniform polymer nanofibers. Mater Lett 99:21–23

    Article  Google Scholar 

  95. Yamashita Y, Ko F, Tanaka A, Miyake H (2007) Characteristics of elastomeric nanofiber membranes produced by electrospinning. J Textile Eng 53:137–142

    Article  Google Scholar 

  96. Vaseashta A (2007) Controlled formation of multiple Taylor cones in electrospinning process. Appl Phys Lett 90:093115

    Article  Google Scholar 

  97. Ding B, Kimura E, Sato T, Fujita S, Shiratori S (2004) Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 45:1895–1902

    Article  Google Scholar 

  98. Theron SA, Yarin AL, Zussman E, Kroll E (2005) Multiple jets in electrospinning: experiment and modeling. Polymer 46:2889–2899

    Article  Google Scholar 

  99. Tomaszewski W, Szadkowski M (2005) Investigation of electrospinning with the use of a multi-jet electrospinning head. Fibres Text East Eur 13:22–26

    Google Scholar 

  100. Zheng Y, Hugh Gong R, Zeng Y (2015) Multijet motion and deviation in electrospinning. RSC Adv 5:48533–48540

    Google Scholar 

  101. Yang Y, Jia Z, Hou L, Liu J, Wang L, Guan Z (2010) A shield ring enhanced equilateral hexagon distributed multi-needle electrospinning spinneret. IEEE Trans Dielectr Electr Insul 17:1592–1601

    Article  Google Scholar 

  102. Xie S, Zeng Y (2012) Effects of electric field on multineedle electrospinning: experiment and simulation study. Ind Eng Chem Res 51:5336–5345

    Article  Google Scholar 

  103. Angammana CJ, Jayaram SH (2011) The effects of electric field on the multijet electrospinning process and fiber morphology. IEEE Trans Dielectr Electr Insul 47:1028–1035

    Google Scholar 

  104. Yamashita Y, Ko F, Miyake H, Higashiyama A (2008) Establishment of nanofiber preparation technique by electrospinning. Sen’i Gakkaishi 64:24–28

    Article  Google Scholar 

  105. Varesano A, Rombaldoni F, Mazzuchetti G, Tonin C, Comotto R (2010) Multi-jet nozzle electrospinning on textile substrates: observations on process and nanofibre mat deposition. Polym Int 59:1606–1615

    Article  Google Scholar 

  106. Varabhas JS, Chase GG, Reneker DH (2008) Electrospun nanofibers from a porous hollow tube. Polymer 49:4226–4229

    Article  Google Scholar 

  107. Dosunmu OO, Chase GG, Kataphinan W, Reneker DH (2006) Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology 17:1123–1127

    Article  Google Scholar 

  108. Zheng Y, Liu X, Zeng Y (2013) Electrospun nanofibers from a multihole spinneret with uniform electric field. J Appl Polym Sci 130:3221–3228

    Article  Google Scholar 

  109. Zheng Y, Zeng Y (2014) Electric field analysis of spinneret design for multihole electrospinning system. J Mater Sci 49:1964–1972

    Article  Google Scholar 

  110. Wang X, Um I, Fang D, Okamoto A, Hsiao B, Chu B (2005) Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments. Polymer 46:4853–4867

    Article  Google Scholar 

  111. Kim YM, Ahn KR, Sung YB (2003) KR Patent WO03080905

    Google Scholar 

  112. Arora P, Chen G, Frisk S, Graham D, Marin R, Suh H (2009) US Patent 2009/0261035

    Google Scholar 

  113. Ahmad B, Stride E, Stoyanov S, Pelan E, Edirisinghe M (2012) Electrospinning of ethyl cellulose fibres with a heated needle and heated air using a co-axial needle: a comparison. J Med Biol Eng 1:1–3

    Google Scholar 

  114. Wang X, Lin T, Wang X (2014) 3D electric field analysis of needleless electrospinning from a ring coil. J Ind Text 44:463–476

    Article  Google Scholar 

  115. Bubakir MM, Li H, Wu W, Li X, Ma S, Yang W (2014) Applications of web produced by hot air assisted melt differential electrospinning method. IOP conf ser Mater Sci Eng 64:012052

    Article  Google Scholar 

  116. Liao CC, Hou SS, Wang CC, Chen CY (2010) Electrospinning fabrication of partially crystalline bisphenol A polycarbonate nanofibers: the effects of molecular motion and conformation in solutions. Eur Polym J 51:2887–2896

    Article  Google Scholar 

  117. Liu SL, Long YZ, Zhang ZH, Zhang HD, Sun B, Zhang JC, Han WP (2013) Assembly of oriented ultrafine polymer fibers by centrifugal electrospinning. J Nanomater 2013, Article ID 713275

    Google Scholar 

  118. Edmondson D, Cooper A, Jana S, Wood D, Zhang M (2012) Centrifugal electrospinning of highly aligned polymer nanofibers over a large area. J Mater Chem 12:18646–18652

    Article  Google Scholar 

  119. Dabirian F, Ravandi SAH, Pishevar AR, Abuzade RA (2011) A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems. J Electrostat 69:540–546

    Article  Google Scholar 

  120. Kancheva M, Toncheva A, Manolova N, Rashkov I (2014) Advanced centrifugal electrospinning setup. Mater Lett 136:150–152

    Article  Google Scholar 

  121. Sun D, Chang C, Li S, Lin L (2006) Near-field electrospinning. Nano Lett 6:839–842

    Article  Google Scholar 

  122. Chang C, Limkrailassiri K, Lin L (2008) Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Appl Phys Lett 93:123111

    Article  Google Scholar 

  123. Bisht G, Nesterenko S, Kulinsky L, Madou M (2012) A Computer-controlled near-field electrospinning setup and its graphic user interface for precision patterning of functional nanofibers on 2D and 3D substrates. J Lab Autom 17:302–308

    Article  Google Scholar 

  124. Zheng J, Long YZ, Sun B, Zhang ZH, Shao F, Zhang HD, Zhang ZM, Huang JY (2012) Polymer nanofibers prepared by low-voltage near-field electrospinning. Chin Phys B 21(4):048102

    Article  Google Scholar 

  125. Chang C, Tran VH, Wang J, Fuh YK, Lin L (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10:726–731

    Article  Google Scholar 

  126. Zhou FL, Hubbard PL, Eichhorn SJ, Parker GJM (2011) Jet deposition in near-field electrospinning of patterned polycaprolactone and sugar-polycaprolactone core–shell fibres. Polymer 52:3603–3610

    Article  Google Scholar 

  127. Camillo DD, Fasano V, Ruggieri F, Santucci S, Lozzi L, Camposeo A, Pisignano D (2013) Near-field electrospinning of light-emitting conjugated polymer nanofibers. Nanoscale 5:11637–11642

    Article  Google Scholar 

  128. Hellmann C, Belardi J, Dersch R, Greiner A, Wendorff JH, Bahnmueller S (2009) High precision deposition electrospinning of nanofibers and nanofiber nonwovens. Polymer 50:1197–1205

    Article  Google Scholar 

  129. Zheng G, Li W, Wang X, Wu D, Sun D, Lin L (2010) Precision deposition of a nanofibre by near-field electrospinning. J Phys D Appl Phys 43:415501

    Article  Google Scholar 

  130. Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M (2012) Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev 41:4708–4735

    Article  Google Scholar 

  131. Kameoka J, Orth R, Yang Y, Czaplewski D, Mathers R, Coates GW, Craighead HG (2003) Scanning tip electrospinning source for deposition of oriented nanofibres. Nanotechnology 14:1124–1129

    Article  Google Scholar 

  132. Fazley Elahi MD, Lu W, Guoping G, Khan F (2013) Core-shell fibers for biomedical applications—A review. J Bioeng Biomed Sci 3:1–14

    Google Scholar 

  133. Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Ganan-Calvo AM (2002) Micro/nano encapsulation via electrified coaxial liquid jets. Science 295:1695–1698

    Article  Google Scholar 

  134. Amler E, Mickova A, Buzgo M (2013) Electrospun core/shell nanofibers: a promising system for cartilage and tissue engineering? Nanomedicine 8:509–512

    Article  Google Scholar 

  135. Qu H, Wei S, Guo Z (2013) Coaxial electrospun nanostructures and their applications. J Mater Chem A 1:11513–11528

    Article  Google Scholar 

  136. McCann JT, Li D, Xia YN (2005) Electrospinning of nanofibers with core-sheath, hollow, or porous structures. J Mater Chem 15:735–738

    Article  Google Scholar 

  137. Anka FH, Balkus KJ (2013) Novel Nanofiltration hollow fiber membrane produced via electrospinning. Ind Eng Chem Res 52:3473–3480

    Article  Google Scholar 

  138. Lee BS, Son SB, Park KM, Seo JH, Lee SH, Choi IS, Oh KH, Yu WR (2012) Fabrication of Si core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode. J Power Sources 206:267–273

    Article  Google Scholar 

  139. Jiang G, Qin X (2014) An improved free surface electrospinning for high throughput manufacturing of core–shell nanofibers. Mater Lett 128:259–262

    Article  Google Scholar 

  140. McCann JT, Marquez M, Xia Y (2006) Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett 6:2868–2872

    Article  Google Scholar 

  141. Wang M, Jing N, Su CB, Kameoka J, Chou CK, Hung MC, Chang KA (2006) Electrospinning of silica nanochannels for single molecule detection. Appl Phys Lett 88:033106

    Article  Google Scholar 

  142. Kalra V, Lee JH, Park JH, Marquez M, Joo YL (2009) Confined assembly of asymmetric block-copolymer nanofibers via multiaxial jet electrospinning. Small 5:2323–2332

    Article  Google Scholar 

  143. Chen HY, Wang N, Di JC, Zhao Y, Song YL, Jiang L (2010) anowire-in-microtube structured Core/Shell fibers via multifluidic coaxial electrospinning. Langmuir 26:11291–11296

    Article  Google Scholar 

  144. Han D, Steckl AJ (2013) Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules. Interfaces 5:8241–8245

    Google Scholar 

  145. Srivastava Y, Loscertales I, Marquez M, Thorsen T (2008) Electrospinning of hollow and core/sheath nanofibers using a microfluidic manifold. Microfluid Nanofluid 4:245–250

    Article  Google Scholar 

  146. Srivastava Y, Rhodes C, Marquez M, Thorsen T (2008) Electrospinning hollow and core/sheath nanofibers using hydrodynamic fluid focusing. Microfluid Nanofluid 5:455–458

    Article  Google Scholar 

  147. Jiang H, Wang L, Zhu K (2014) Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents. J Control Release 193:296–303

    Article  Google Scholar 

  148. Wang C, Tong SN, Tse YH, Wang M (2012) Conventional electrospinning vs. emulsion electrospinning: a comparative study on the development of nanofibrous drug/biomolecule delivery vehicles. Adv Mater Res 410:118–121

    Google Scholar 

  149. Vasita R, Gelain F (2013) Core-sheath fibers for regenerative medicine. In: Tiwari A, Tiwari A (eds) Nanomaterials in drug delivery, imaging, and tissue engineering. Wiley, Hoboken, pp 493–534

    Chapter  Google Scholar 

  150. Hua J, Prabhakaran MP, Ding X, Ramakrishna S (2015) Emulsion electrospinning of polycaprolactone: influence of surfactant type towards the scaffold properties. J Biomater Sci Polym Ed 26:57–75

    Article  Google Scholar 

  151. Xu XL, Yang LX, Xu XY, Wang X, Chen XS, Liang QZ, Zeng J, Jing XB (2005) Ultrafine medicated fibers electrospun from W/O emulsions. J Control Release 108:33–42

    Article  Google Scholar 

  152. Viry L, Moulton SE, Romeo T, Suhr C, Mawad D, Cook M, Wallace GG (2012) Emulsion-coaxial electrospinning: designing novel architectures for sustained release of highly soluble low molecular weight drugs. J Mater Chem 22:11347–11353

    Article  Google Scholar 

  153. Wang C, Wang M (2014) Formation of core–shell structures in emulsion electrospun fibres: a comparative study. Aust J Chem 67:1403–1413

    Article  Google Scholar 

  154. Angeles M, Cheng HL, Velankar SS (2008) Emulsion electrospinning: Composite fibers from drop breakup during electrospinning. Polym Adv Technol 19:728–733

    Article  Google Scholar 

  155. Ingavle GC, Leach JK (2014) Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering. Tissue Eng Part B Rev 20:277–293

    Article  Google Scholar 

  156. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006

    Article  Google Scholar 

  157. Khan WS, Asmatulu R, Ceylan M, Jabbarnia A (2013) Recent progress on conventional and non-conventional electrospinning processes. Fiber Polym 14:1235–1247

    Article  Google Scholar 

  158. Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH (2005) Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer 46:5094–5102

    Article  Google Scholar 

  159. Megelski S, Stephens JS, Chase DB, Rabolt JF (2002) Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35:8456–8466

    Article  Google Scholar 

  160. Huang L, Nagapudi K, Apkarian RP, Chaikof EL (2001) Engineered collagen-PEO nanofibers and fabrics. J Biomater Sci Polym Ed 12:979–993

    Article  Google Scholar 

  161. Haghi AK, Akbari M (2007) Trends in electrospinning of natural nanofibers. Phys Status Solidi 204:1830–1834

    Article  Google Scholar 

  162. Andrady AL (2008) Factors affecting nanofiber quality. In: Science and technology of polymer nanofibers. Wiley, Hoboken, pp 81–110

    Google Scholar 

  163. Pelipenko J, Kristl J, Jankovic B, Baumgartner S, Kocbek P (2013) The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. Int J Pharm 456:125–134

    Article  Google Scholar 

  164. Okutan N, Terzi P, Altay F (2014) Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids 39:19–26

    Article  Google Scholar 

  165. Liu Y, He JH, Yu JY, Zeng HM (2008) Controlling numbers and sizes of beads in electrospun nanofibers. Polym Int 57:632–636

    Article  Google Scholar 

  166. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211

    Article  Google Scholar 

  167. Zhang C, Yuan X, Wu L, Han Y, Sheng J (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J 41:423–432

    Article  Google Scholar 

  168. Demir MM, Yilgor I, Yilgor E, Erman B (2002) Electrospinning of polyurethane fibres. Polymer 43:3303–3309

    Article  Google Scholar 

  169. Reneker DH, Chun L (1996) Nanometre diameters of polymer produced by electrospinning. Nanotechnology 7:216–223

    Article  Google Scholar 

  170. Geng X, Kwon K-H, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432

    Article  Google Scholar 

  171. Katti DS, Robinson KW, Ko FK, Laurencin CT (2004) Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res Part B Appl Biomater 70:286–296

    Article  Google Scholar 

  172. Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38:963–991

    Article  Google Scholar 

  173. Vrieze SD, Camp TV, Nelvig A, Hagstrom B, Westbroek P, Clerck KD (2009) The effect of temperature and humidity on electrospinning. J Mater Sci 44:1357–1362

    Article  Google Scholar 

  174. Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37:573–578

    Article  Google Scholar 

  175. Li D, Wang YL, Xia Y (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3:1167–1171

    Article  Google Scholar 

  176. Pagliara S, Camposeo A, Polini A, Cingolani R, Pisignano D (2009) Electrospun light-emitting nanofibers as excitation source in microfluidic devices. Lab Chip 9:2851–2856

    Article  Google Scholar 

  177. Agarwal S, Greimer A, Wendorff JH (2009) Electrospinning of manmade and biopolymer nanofibers—Progress in techniques, materials, and applications. Adv Funct Mater 19:2863–2879

    Article  Google Scholar 

  178. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238

    Article  Google Scholar 

  179. Vaz CM, van Tuijl S, Bouten CVC, Baaijens FPT (2005) Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater 1:575–582

    Article  Google Scholar 

  180. Putti M, Simonet M, Solberg R, Peters GWM (2015) Electrospinning poly(ε-caprolactone) under controlled environmental conditions: influence on fiber morphology and orientation. Polymer 63:189–195

    Article  Google Scholar 

  181. Chan KHK, Wong SY, Tiju WC, Li X, Kotaki M, He CB (2010) Morphologies and electrical properties of electrospun poly (R)-3- hydroxybutyrate-co-(R)-3-hydroxyvalerate/ multiwalled carbon nanotubes fibers. J Appl Polym Sci 116(2):1030–1035

    Google Scholar 

  182. Katta P, Alessandro M, Ramsier RD, Chase GG (2004) Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett 4:2215–2218

    Article  Google Scholar 

  183. Sundaray B, Subramanian V, Natarajan TS, Xiang RZ, Chang CC, Fann WS (2004) Electrospinning of continuous aligned polymer fibers. Appl Phys Lett 84:1222–1224

    Article  Google Scholar 

  184. Beachley V, Katsanevakis E, Zhang N, Wen X (2012) In: Jayakumar R, Nair S (eds) Biomedical applications of polymeric nanofibers, vol 246. Springer, Berlin, pp 171–212

    Google Scholar 

  185. Kiselev P, Rosell-Llompart J (2012) Highly aligned electrospun nanofibers by elimination of the whipping motion. J Appl Polym Sci 125:2433–2441

    Article  Google Scholar 

  186. Theron A, Zussman E, Yarin AL (2001) Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 12:384–390

    Article  Google Scholar 

  187. Park SH, Yang DY (2011) Fabrication of aligned electrospun nanofibers by inclined gap method. J Appl Polym Sci 120:1800–1807

    Article  Google Scholar 

  188. Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) Electrospinning process. In: An introduction to electrospinning and nanofibers. World Scientific Publishing Company, Singapore, pp 90–154

    Google Scholar 

  189. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89–R106

    Article  Google Scholar 

  190. Li D, Wang YL, Xia Y (2004) Electrospinning Nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater 16:361–366

    Article  Google Scholar 

  191. Teo WE, Ramakrishna S (2005) Electrospun fibre bundle made of aligned nanofibres over two fixed points. Nanotechnology 16:1878–1884

    Article  Google Scholar 

  192. Kakade MV, Givens S, Gardner K, Lee KH, Chase DB, Rabolt JF (2007) Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers. J Am Chem Soc 129:2777–2782

    Article  Google Scholar 

  193. Pokorny M, Niedoba K, Velebny V (2010) Transversal electrostatic strength of patterned collector affecting alignment of electrospun nanofibers. Appl Phys Lett 96:193111

    Article  Google Scholar 

  194. Bazbouz MB, Stylios GK (2008) Alignment and optimization of nylon 6 nanofibers by electrospinning. J Appl Polym Sci 107:3023–3032

    Article  Google Scholar 

  195. Kim G, Kim W (2006) Formation of oriented nanofibers using electrospinning. Appl Phys Lett 88:233101

    Article  Google Scholar 

  196. Dalton PD, Klee D, Moller M (2005) Electrospinning with dual collection rings. Polymer 46:611–614

    Article  Google Scholar 

  197. Park SH, Hong JW, Shin JH, Yang DY (2011) Quantitatively controlled fabrication of uniaxially aligned nanofibrous scaffold for cell adhesion. J Nanomater, Article ID 201969

    Google Scholar 

  198. Teo WE, Kotaki M, Mo XM, Ramakrishna S (2005) Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology 16:918–924

    Article  Google Scholar 

  199. Carnell LS, Siochi EJ, Holloway NM, Stephens RM, Rhim C, Niklason LE, Clark RL (2008) Aligned mats from electrospun single fibers. Macromolecules 41:5345–5349

    Article  Google Scholar 

  200. Zussman E, Theron A, Yarin AL (2003) Electrostatic field-assisted building 3-D nano-structures from electrospun nanofibers. Appl Phys Lett 82:973–975

    Article  Google Scholar 

  201. Wu Y, Carnell LA, Clark RL (2007) Control of electrospun mat width through the use of parallel auxiliary electrodes. Polymer 48:5653–5661

    Article  Google Scholar 

  202. Nurfaizey AH, Stanger J, Tucker N, Buunk N, Wallace A, Staiger MP (2012) Manipulation of electrospun fibres in flight: the principle of superposition of electric fields as a control method. J Mater Sci 47:1156–1163

    Article  Google Scholar 

  203. Jafari A, Jeon JH, Oh IK (2011) Well-aligned nano-fiberous membranes based on three-pole electrospinning with channel electrode. Macromol Rapid Commun 32:921–926

    Article  Google Scholar 

  204. Acharya M, Arumugam GK, Heiden PA (2008) Dual electric field induced alignment of electrospun nanofibers. Macromol Mater Eng 293:666–674

    Article  Google Scholar 

  205. Arras MML, Grasl C, Bergmeister H, Schima H (2012) Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes. Sci Technol Adv Mater 13:035008

    Article  Google Scholar 

  206. Grasl C, Arras MML, Stoiber M, Bergmeister H, Schima H (2013) Electrodynamic control of the nanofiber alignment during electrospinning. Appl Phys Lett 102:053111

    Article  Google Scholar 

  207. dos Santos AM, Dierck J, Troch M, Podevijn M, Schach E (2011) Production of continuous electrospun mats with improved mechanical properties. Macromol Mater Eng 296:637–644

    Article  Google Scholar 

  208. Unser AM, Xie Y (2012) Electrospinning of nanofibers. In: Xie Y (ed) The nanobiotechnology handbook. CRC Press, Boca Raton, pp 293–320

    Google Scholar 

  209. Shin EH, Cho KS, Seo MH, Kim H (2008) Determination of electrospun fiber diameter distributions using image analysis processing. Macromol Res 16:314–319

    Article  Google Scholar 

  210. Chen JP, Su CH (2011) Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater 7:234–243

    Article  Google Scholar 

  211. Haghi AK, Zaikov GE (2010) Nanofiber research: advances in theory and practice. Nova Science Publishers. Inc, New York, pp 59–106

    Google Scholar 

  212. Ziabari M, Mottaghitalab V, Haghi AK (2009) Application of direct tracking method for measuring electrospun nanofiber diameter. Braz J Chem Eng 26:53–62

    Article  Google Scholar 

  213. Öznergiz E, Kiyak YE, Kamasak ME, Yildirim I (2014) Automated nanofiber diameter measurement in SEM images using a robust image analysis method. J Nanomater 2014, Article ID 738490

    Google Scholar 

  214. Barhate RS, Loong CK, Ramakrishna S (2006) Preparation and characterization of nanofibrous filtering media. J Membr Sci 283:209–218

    Article  Google Scholar 

  215. Aussawasathien D, Teerawattananon C, Vongachariya A (2008) Separation of micron to sub-micron particles from water: electrospun nylon-6 nanofibrous membranes as pre-filters. J Membr Sci 315:11–19

    Article  Google Scholar 

  216. Affandi NDN, Truong YB, Kyratzis IL, Padhye R, Arnold L (2010) A non-destructive method for thickness measurement of thin electrospun membranes using white light profilometry. J Mater Sci 45:1411–1418

    Article  Google Scholar 

  217. Rutledge GC, Lowery JL, Chia-Ling P (2009) Characterization by mercury porosimetry of nonwoven fiber media with deformation. J Eng Fiber Fabr 4:1–13

    Google Scholar 

  218. Frey MW, Li L (2007) Electrospinning and porosity measurements of nylon-6/poly(ethylene oxide) blended nonwovens. J Eng Fiber Fabr 2:31–37

    Google Scholar 

  219. Ziabari M, Mottaghitalab V, Khodaparast Haghi A (2008) Evaluation of electrospun nanofiber pore structure parameters. Korean J Chem Eng 25:923–932

    Article  Google Scholar 

  220. Ghasemi-Mobarakeh L, Semnani D, Morshed M (2007) A novel method for porosity measurement of various surface layers of nanofibers mat using image analysis for tissue engineering applications. J Appl Polym Sci 106:2536–2542

    Article  Google Scholar 

  221. Sreedhara SS, Tata NR (2013) Novel method for measurement of porosity in nanofiber mat using pycnometer in filtration. J Eng Fiber Fabr 8:132–137

    Google Scholar 

  222. Tan EPS, Lim CT (2006) Mechanical characterization of nanofibers—A review. Compos Sci Technol 66:1102–1111

    Article  Google Scholar 

  223. Bazbouz MB, Stylios GK (2010) The tensile properties of electrospun nylon 6 single nanofibers. J Polym Sci 48:1719–1731

    Article  Google Scholar 

  224. Hang F, Lu D, Bailey RJ, Jimenez-Palomar I, Stachewicz U, Cortes-Ballesteros B, Davies M, Zech M, Bodefeld C, Barber AH (2011) In situ tensile testing of nanofibers by combining atomic force microscopy and scanning electron microscopy. Nanotechnology 22:365708

    Article  Google Scholar 

  225. Mohammadzadehmoghadam S, Dong Y, Daives IJ (2015) Recent progress in electrospun nanofibers: reinforcement effect and mechanical performance. J Polym Sci Pt B-Polym Phys 53:1171–1212

    Article  Google Scholar 

  226. Zussman E, Burman M, Yarin AL, Khalfin R, Cohen Y (2006) Tensile deformation of electrospun nylon-6,6 nanofibers. J Polym Sci Part B Polym Phys 44:1482–1489

    Google Scholar 

  227. Li Y, Lim CT, Kotaki M (2015) Study on structural and mechanical properties of porous PLA nanofibers electrospun by channel-based electrospinning system. Polymer 56:572–580

    Article  Google Scholar 

  228. Tan EPS, Ng SY, Lim CT (2005) Tensile testing of a single ultrafine polymeric fiber. Biomaterials 26:1453–1456

    Article  Google Scholar 

  229. Papkov D, Zou Y, Andalib MN, Goponenko A, Cheng SZD, Dzenis YA (2013) Simultaneously strong and tough ultrafine continuous nanofibers. ACS Nano 7:3324–3331

    Article  Google Scholar 

  230. Fee TJ, Dean DR, Eberhardt AW, Berry JL (2012) A novel device to quantify the mechanical properties of electrospun nanofibers. J Biomech Eng 134:104503

    Article  Google Scholar 

  231. Naraghi M, Chasiotis I, Kahn H, Wen Y, Dzenis Y (2007) Mechanical deformation and failure of electrospun polyacrylonitrile nanofibers as a function of strain rate. Appl Phys Lett 91:151901

    Article  Google Scholar 

  232. Jaeger D, Schischka J, Bagdahn J, Jaeger R (2009) Tensile testing of individual ultrathin electrospun poly(L-lactic acid) fibers. J Appl Polym Sci 114:3774–3779

    Article  Google Scholar 

  233. Carlisle CR, Coulais C, Namboothiry M, Carroll DL, Hantgan RR, Guthold M (2009) The mechanical properties of individual, electrospun fibrinogen fibers. Biomaterials 30:1205–1213

    Article  Google Scholar 

  234. Baker S, Sigley J, Helms CC, Stitzel J, Berry J, Bonin K, Guthold M (2012) The mechanical properties of dry, electrospun fibrinogen fibers. Mater Sci Eng C 32:215–221

    Article  Google Scholar 

  235. Gestos A, Whitten PG, Spinks GM, Wallace GG (2013) Tensile testing of individual glassy, rubbery and hydrogel electrospun polymer nanofibres to high strain using the atomic force microscope. Polym Test 32:655–664

    Article  Google Scholar 

  236. Tan EPS, Lim CT (2004) Physical properties of a single polymeric nanofiber. Appl Phys Lett 84:1603–1605

    Article  Google Scholar 

  237. Liao CC, Wang CC, Chen CY, Lai WJ (2011) Stretching-induced orientation of polyacrylonitrile nanofibers by an electrically rotating viscoelastic jet for improving the mechanical properties. Polymer 52:2263–2275

    Article  Google Scholar 

  238. Bellan LM, Kameoka J, Craighead HG (2005) Measurement of the Young’s moduli of individual polyethylene oxide and glass nanofibres. Nanotechnology 16:1095–1099

    Article  Google Scholar 

  239. Gu SY, Wu QL, Ren J, Vancso GJ (2005) Mechanical properties of a single electrospun fiber and its structures. Macromol Rapid Commun 26:716–720

    Article  Google Scholar 

  240. Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646

    Article  Google Scholar 

  241. Croisier F, Duwez AS, Jérôme C, Léonard AF, van der Werf KO, Dijkstra PJ, Bennink ML (2012) Mechanical testing of electrospun PCL fibers. Acta Biomater 8:218–224

    Article  Google Scholar 

  242. Zussman E, Chen X, Ding W, Calabri L, Dikin DA, Quintana JP, Ruoff RS (2005) Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon 43:2175–2185

    Article  Google Scholar 

  243. Yuya PA, Wen Y, Turner JA, Dzenis YA, Li Z (2007) Determination of the Young’s modulus of individual electrospun nanofibers by microcantilever vibration method. Appl Phys Lett 90:111909

    Article  Google Scholar 

  244. Liu Y, Chen S, Zussman E, Korach CS, Zhao W, Rafailovich M (2011) Diameter-dependent modulus and melting behavior in electrospun semicrystalline polymer fibers. Macromolecules 44:4439–4444

    Article  Google Scholar 

  245. Burman M, Arinstein A, Zussman E (2008) Free flight of an oscillated string pendulum as a tool for the mechanical characterization of an individual polymer nanofiber. Appl Phys Lett 93:193118

    Article  Google Scholar 

  246. Wang W, Peijs T, Barber AH (2010) Indentation induced solid state ordering of electrospun polyethylene oxide fibres. Nanotechnology 21:035705

    Article  Google Scholar 

  247. Chen YQ, Zheng XJ, Mao SX, Li W (2010) Nanoscale mechanical behavior of vanadium doped ZnO piezoelectric nanofiber by nanoindentation technique. J Appl Phys 107:094302

    Article  Google Scholar 

  248. Ji Y, Li B, Ge S, Sokolov JC, Rafailovich MH (2006) Structure and nanomechanical characterization of electrospun PS/clay nanocomposite fibers. Langmuir 22:1321–1328

    Article  Google Scholar 

  249. Lin Y, Clark DM, Yu X, Zhong Z, Liu K, Reneker DH (2012) Mechanical properties of polymer nanofibers revealed by interaction with streams of air. Polymer 53:782–790

    Article  Google Scholar 

  250. Hwang KY, Kim SD, Kim YW, Yu WR (2010) Mechanical characterization of nanofibers using a nanomanipulator and atomic force microscope cantilever in a scanning electron microscope. Polym Test 29:375–380

    Article  Google Scholar 

  251. Wong SC, Baji A, Leng S (2008) Effect of fiber diameter on tensile properties of electrospun poly (ɛ-caprolactone). Polymer 49:4713–4722

    Article  Google Scholar 

  252. Shin MK, Kim SI, Kim SJ, Kim SK, Lee H, Spinks GM (2006) Size-dependent elastic modulus of single electroactive polymer nanofibers. Appl Phys Lett 89:231929

    Article  Google Scholar 

  253. Arinstein A, Burman M, Gendelman O, Zussman E (2007) Effect of supramolecular structure on polymer nanofibre elasticity. Nat Nanotechnol 2:59–62

    Article  Google Scholar 

  254. Wu XF, Dzenis YA (2007) Size effect in polymer nanofibers under tension. J Appl Phys 102:044306

    Article  Google Scholar 

  255. Camposeo A, Greenfeld I, Tantussi F, Pagliara S, Moffa M, Fuso F, Allegrini M, Zussman E, Pisignano D (2013) Local mechanical properties of electrospun fibers correlate to their internal nanostructure. Nano Lett 13:5056–5062

    Article  Google Scholar 

  256. Arinstein A (2013) Confinement mechanism of electrospun polymer nanofiber reinforcement. J Polym SciPart B Polym Phys 51:756–763

    Article  Google Scholar 

  257. Naraghi M, Chasiotis I, Kahn H, Wen Y, Dzenis Y (2007) Novel method for mechanical characterization of polymeric nanofibers. Rev Sci Instrum 78:085108

    Article  Google Scholar 

  258. Wu XF, Zhou Z, Rahman A, Bedarkar A (2013) Mechanical properties of continuous nanofibers: characterization and mechanics. In: Dong Y (ed) Nanostructures: properties, production methods and applications. Nova Science Publishers Inc, New York, pp 247–286

    Google Scholar 

  259. Tan EPS, Zhang YZ, Ramakrishna S, Teck LC (2007) Polymer nanofibers: fabrication, applications and characterization. In: Mohammad F (ed) Specialty polymers: materials and applications. I. K. International Pvt Ltd, New Delhi, pp 77–116

    Google Scholar 

  260. Rahman Khan MM, Tsukada M, Zhang XH, Morikawa H (2013) Preparation and characterization of electrospun nanofibers based on silk sericin powders. J Mater Sci 48:3731–3736

    Google Scholar 

  261. Lespade P, Marchand A, Couzi M, Cruege MF (1984) Caracterisation de materiaux carbones par microspectrometrie Raman. Carbon 22:375–385

    Article  Google Scholar 

  262. Sadrjahani M, Hoseini SA, Mottaghitalab V, Haghi AK (2010) Development and characterization of highly oriented pan nanofiber. Braz J Chem Eng 27:583–589

    Google Scholar 

  263. Kim SH, Nam YS, Lee TS, Park WH (2003) Silk Fibroin Nanofiber. Electrospinning Prop Struct Polym J 35:185–190

    Google Scholar 

  264. Ratner BD, Chilkoti A, Castner DG (1992) Contemporary methods for characterizing complex biomaterial surfaces. Clin Mater 11:25–36

    Article  Google Scholar 

  265. Zhang Y, Huang ZM, Xu X, Lim CT, Ramakrishna S (2004) Preparation of core-shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning. Chem Mater 16:3406–3409

    Article  Google Scholar 

  266. Abbasi A, Nasef MM, Takeshi M, Faridi-Maj R (2014) Electrospinning of nylon-6,6 solutions into nanofibers: rheology and morphology relationships. Chin J Polym Sci 32:793–804

    Article  Google Scholar 

  267. Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681

    Article  Google Scholar 

  268. Ero-Phillips O, Jenkins M, Stamboulis A (2012) Tailoring Crystallinity of electrospun PLLA fibres by control of electrospinning parameters. Polymers 4:1331–1348

    Article  Google Scholar 

  269. Cui WG, Li XH, Zhu XL, Yu G, Zhou SB, Weng J (2006) Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules 7:1623–1629

    Article  Google Scholar 

  270. Zong XH, Ran SF, Kim KS, Fang DF, Hsiao BS, Chu B (2003) Structure and morphology changes during in vitro degradation of electrospun poly(glycolide-co-lactide) nanofiber membrane. Biomacromolecules 4:416–423

    Article  Google Scholar 

  271. Luzio A, Canesi EV, Bertarelli C, Caironi M (2014) Electrospun polymer fibers for electronic applications. Materials 7:906–947

    Article  Google Scholar 

  272. Prabhakaran MP, Ghasemi-Mobarakeh L, Jin G, Ramakrishna S (2011) Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J Biosc Bioeng 112:501–507

    Article  Google Scholar 

  273. Chronakis IS, Grapenson S, Jakob A (2006) Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties. Polymer 47:1597–1603

    Article  Google Scholar 

  274. Agend F, Naderi N, Fareghi-Alamdari R (2007) Fabrication and electrical characterization of electrospun polyacrylonitrile-derived carbon nanofibers. J Appl Polym Sci 106:255–259

    Article  Google Scholar 

  275. Srivastava Y, Marquez M, Thorsen T (2007) Multijet electrospinning of conducting nanofibers from microfluidic manifolds. J Appl Polym Sci 106:3171–3178

    Article  Google Scholar 

  276. Zhang Y (2013) Electrospun nanofibers with tunable electrical conductivity. Ph.D dissertation, Massachusetts Institute of Technology, USA

    Google Scholar 

  277. Zhang Y, Rutledge GC (2012) Electrical conductivity of electrospun polyaniline and polyaniline-blend fibers and mats. Macromolecules 45:4238–4246

    Article  Google Scholar 

  278. McCullen SD, Stevens DR, Roberts WA, Ojha SS, Clarke LI, Gorga RE (2007) Morphological, electrical, and mechanical characterization of electrospun nanofiber mats containing multiwalled carbon nanotubes. Macromolecules 40:997–1003

    Article  Google Scholar 

  279. MacDiarmid AG, Jones WE Jr, Norris ID, Gao J, Johnson AT Jr, Pinto NJ, Hone J, Han B, Ko FK, Okuzaki H, Llaguno M (2001) Electrostatically-generated nanofibers of electronic polymers. Synth Met 119:27–30

    Article  Google Scholar 

  280. Nagata S, Atkinson GM, Pestov D, Tepper GC, Mcleskey Jr JT (2013) Electrospun polymer-fiber solar cell. Adv Mater Sci Eng 2013, Article ID 975947

    Google Scholar 

  281. Babel A, Li D, Xia Y, Jenekhe SA (2005) Electrospun nanofibers of blends of conjugated polymers: morphology, optical properties, and field-effect transistors. Macromolecules 38:4705–4711

    Article  Google Scholar 

  282. Balderas U, Falcony C, Moggio I, Ariasc E, Mondragón M (2013) A photoluminescence study of electrospun fibers of conjugated poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] blended with poly(9-vinylcarbazole). Polymer 54:2062–2066

    Article  Google Scholar 

  283. Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S (2007) Structural and optical properties of electrospun TiO2 nanofibers. Chem Mater 19:6536–6542

    Article  Google Scholar 

  284. Kim JS, Reneker DH (1999) Mechanical properties of composites using ultrafine electrospun fibers. Polym Compos 20:124–131

    Article  Google Scholar 

  285. Tang C, Liu H (2008) Cellulose nanofiber reinforced poly (vinyl alcohol) composite film with high visible light transmittance. Compos Part A-Appl S 39:1638–1643

    Article  Google Scholar 

  286. Lu B, Zheng G, Dai K, Liu C, Chen J, Shen C (2015) Enhanced mechanical properties ofpolyethylene composites with low content of electrospun nylon-66 nanofibers. Mater Lett 140:131–134

    Article  Google Scholar 

  287. Sun W, Cai Q, Li P, Deng X, Wei Y, Xu M, Yang X (2010) Post-draw PAN-PMMA nanofiber reinforced and toughened bis-GMA dental restorative composite. Dent Mater 26:873–880

    Article  Google Scholar 

  288. Liao H, Wu Y, Wu M, Zhan X, Liu H (2012) Aligned electrospun cellulose fibers reinforced epoxy resin composite films with high visible light transmittance. Cellulose 19:111–119

    Article  Google Scholar 

  289. Tang C, Wu M, Wu Y, Liu H (2011) Effects of fiber surface chemistry and size on the structure and properties of poly(vinyl alcohol) composite films reinforced with electrospun fibers. Compos Part A Appl S 42:1100–1109

    Article  Google Scholar 

  290. Jiang S, Duan G, Schöbel J, Agarwal S, Greiner A (2013) Short electrospun polymeric nanofibers reinforced polyimide nanocomposites. Compos Sci Technol 88:57–61

    Article  Google Scholar 

  291. Wu M, Wu Y, Liu Z, Liu H (2012) Optically transparent poly(methyl methacrylate) composite films reinforced with electrospun polyacrylonitrile nanofibers. J Compos Mater 46:2731–2738

    Article  Google Scholar 

  292. Meng F, Zhao R, Zhan Y, X Liu X (2011) Design of thorn-like micro/nanofibers: fabrication and controlled morphology for engineered composite materials applications. J Mater Chem 21:16385–16390

    Google Scholar 

  293. Liao H, Wu Y, Wu M, Liu H (2011) Effects of fiber surface chemistry and roughness on interfacial structures of electrospun fiber reinforced epoxy composite films. Polym Compos 32:837–845

    Article  Google Scholar 

  294. Dzenis Y (2008) Structural nanocomposites. Science 319:419–420

    Article  Google Scholar 

  295. Magniez K, Chaffraix T, Fox B (2011) Toughening of a carbon-fibre composite using electrospun poly (hydroxyether of bisphenol a) nanofibrous membranes through inverse phase separation and inter-domain etherification. Materials 4:1967–1984

    Article  Google Scholar 

  296. Zhang J, Yang T, Lin T, Wang CH (2012) Phase morphology of nanofibre interlayers: critical factor for toughening carbon/epoxy composites. Compos Sci Technol 72:256–262

    Article  Google Scholar 

  297. Zhang J, Lin T, Wang X (2010) Electrospun nanofiber toughened carbon/epoxy composites: effects of polyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness. Compos Sci Technol 70:1660–1666

    Article  Google Scholar 

  298. van der Heijden S, Daelemans L, Schoenmaker BD, Baere ID, Rahier H, Paepegem WV, Clerck KD (2014) Interlaminar toughening of resin transfer moulded glass fibre epoxy laminates by polycaprolactone electrospun nanofibres. Compos Sci Technol 104:66–73

    Article  Google Scholar 

  299. Langer R, Vacanti J (1993) Tissue engineering. Science 260:920–926

    Article  Google Scholar 

  300. Cen L, Liu W, Cui L, Zhang W, Cao Y (2008) Collagen tissue engineering: Development of novel biomaterials and applications. Pediatr Res 63:492–496

    Article  Google Scholar 

  301. Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13–22

    Article  Google Scholar 

  302. Ribba L, Parisi M, D’Accorso NB, Goyanes S (2014) Electrospun nanofibrous mats: from vascular repair to osteointegration. J Biomed Nanotechnol 10:1–28

    Article  Google Scholar 

  303. Pelipenko J, Kocbek P, Kristl J (2015) Nanofiber diameter as a critical parameter affecting skin cell response. Eur J Pharm Sci 66:29–35

    Article  Google Scholar 

  304. Doustgani A, Vheghani-Farahani E, Soleimani M (2013) Aligned and random nanofibrous nanocomposite scaffolds for bone tissue. Nanomed J 1:20–27

    Google Scholar 

  305. Gomes SR, Rodrigues G, Martins GG, Roberto MA, Mafra M, Henriques CMR, Silva JC (2015) In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: a comparative study. Mater Sci Eng C Mater Biol Appl 46:348–358

    Article  Google Scholar 

  306. Gluck JM, Rahgozar P, Ingle NP, Rofail F, Petrosian A, Cline MG, Jordan MC, Roos KP, MacLellan WR, Shemin RJ, Heydarkhan-Hagvall S (2011) Hybrid coaxial electrospun nanofibrous scaffolds with limited immunological response created for tissue engineering. J Biomed Mater Res B 99B:180–190

    Article  Google Scholar 

  307. Kim YT, Haftel VK, Kumar S, Bellamkonda RV (2008) The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials 9:3117–3127

    Article  Google Scholar 

  308. Shalumon KT, Anulekha KH, Chennazhi KP, Tamura H, Nair SV, Jayakumar R (2011) Fabrication of chitosan/poly (caprolactone) nanofibrous scaffold for bone and skin tissue engineering. Int J Biol Macromol 48:571–576

    Article  Google Scholar 

  309. Pillay V, Dott C, Choonara YE, Tyagi C, Toma L, Kumar P, du Toit LC, Ndesendo VMK (2013) A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater 2013, Article ID 789289

    Google Scholar 

  310. Gilchrist SE, Lange D, Letchford K, Bach H, Fazli L, Burt HM (2013) Fusidic acid and rifampicin co-loaded PLGA nanofibers for the prevention of orthopedic implant associated infections. J Control Release 170:64–73

    Article  Google Scholar 

  311. Lu T, Jing X, Song X, Wang X (2012) Doxorubicin-loaded ultrafine PEG-PLA fiber mats against hepatocarcinoma. J Appl Polym Sci 123:209–217

    Article  Google Scholar 

  312. Tungprapa S, Jangchud I, Supaphol P (2007) Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats. Polymer 48:5030–5041

    Article  Google Scholar 

  313. Li X, Su Y, Liu S, Tan L, Mo X, Ramakrishna S (2010) Encapsulation of proteins in poly(L lactide- co-caprolactone) fibers by emulsion electrospinning. Colloid Surf B 75:418–424

    Article  Google Scholar 

  314. De Laporte L, Shea LD (2007) Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Deliv Rev 59:292–307

    Article  Google Scholar 

  315. Rujitanaroj P, Wang YC, Wang J, Chew SY (2011) Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials 32:5915–5923

    Article  Google Scholar 

  316. Xu X, Chen X, Ma P, Wang X, Jing X (2008) The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. Eur J Pharm Biopharm 70:165–170

    Article  Google Scholar 

  317. Ranganath SH, Wang CH (2008) Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma. Biomaterials 29:2996–3003

    Article  Google Scholar 

  318. Kenawy ER, Abdel-Hay FI, El-Newehy MH, Wnek GE (2009) Processing of polymer nanofibers through electrospinning as drug delivery systems. Mater Chem Phys 113:296–302

    Article  Google Scholar 

  319. Lin X, Tang D, Du H (2013) Self-assembly and controlled release behaviour of the water-insoluble drug nifedipine from electrospun PCL-based polyurethane nanofibres. J Pharm Pharmacol 65:673–681

    Article  Google Scholar 

  320. Zamani M, Morshed M, Varshosaz J, Jannesari M (2010) Controlled release of metronidazole benzoate from poly epsilon-caprolactone electrospun nanofibers for periodontal diseases. Eur J Pharm Biopharm 75:179–185

    Article  Google Scholar 

  321. Wang C, Yan KW, Lin YD, Hsieh PCH (2010) Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release. Macromolecules 43:6389–6397

    Article  Google Scholar 

  322. Meng ZX, Xu XX, Zheng W, Zhou HM, Lia L, Zheng YF, Lou X (2011) Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids Surf B Biointerfaces 84:97–102

    Article  Google Scholar 

  323. Liu C, Hsu PC, Lee HW, Ye M, Zheng G, Liu N, Li W, Cui Y (2015) Transparent air filter for high-efficiency PM2.5 capture. Nat Commun 6, Article number: 6205

    Google Scholar 

  324. Molaeipour Y, Gharehaghaji AA, Bahrami H (2014) Filtration performance of cigarette filter tip containing electrospun nanofibrous filter. J Indus Text. doi:10.1177/1528083714528016

    Google Scholar 

  325. Li J, Gao F, Liu LQ (2013) Zhang Z. Needleless electro-spun nanofibers used for filtration of small particles, eXPRESS Polym Lett 7:683–689

    Google Scholar 

  326. Jaroszczyk T, Petrik S, Donahue K (2009) Recent development in heavy duty engine air filtration and the role of nanofiber filter media. J KONES 16:207–216

    Google Scholar 

  327. Sang Y, Li F, Gu Q, Liang C, Chen J (2008) Heavy metal-contaminated groundwater treatment by a novel nanofiber membrane. Desalination 223:349–360

    Article  Google Scholar 

  328. Daels N, De Vrieze S, Sampers I, Decostere B, Westbroek P, Dumoulin A, Dejans P, De Clerck K, Van Hulle SWH (2011) Potential of a functionalised nanofibre microfiltration membrane as an antibacterial water filter. Desalination 275:285–290

    Article  Google Scholar 

  329. Wang XF, Chen XM, Yoon K, Fang DF, Hsiao BS, Chu B (2005) High flux filtration medium Based on nanofibrous substrate with hydrophilic nanocomposite coating. Environ Sci Technol 39:7684–7691

    Article  Google Scholar 

  330. Ahmed FE, Lalia BS, Hashaikeh R (2015) A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356:15–30

    Article  Google Scholar 

  331. Wang X, Li Y, Ding B (2014) Electrospun nanofiber-Based sensors. In: Ding B, Yu J (eds) Electrospun nanofibers for energy and environmental applications. Springer, Berlin, pp 267–297

    Chapter  Google Scholar 

  332. Khoshaman AH (2011) Application of electrospun thin films for supra-molecule based gas sensing. Master of applied sciences thesis, Simon Fraser University

    Google Scholar 

  333. Lin Q, Li Y, Yang M (2012) Highly sensitive and ultrafast response surface acoustic wave humidity sensor based on electrospun polyaniline/poly(vinyl butyral) nanofibers. Anal Chim Acta 748:73–80

    Article  Google Scholar 

  334. Adewuyi S, Ondigo DA, Zugle R, Tshentu Z, Nyokong T, Torto N (2012) A highly selective and sensitive pyridylazo-2-naphthol-poly(acrylic acid) functionalized electrospun nanofiber fluorescence “turn-off” chemosensory system for Ni2+. Anal Method 4:1729–1735

    Article  Google Scholar 

  335. Poltue T, Rangkupan R, Dubas ST, Dubas L (2011) Nickel (II) ions sensing properties of dimethylglyoxime/poly(caprolactone) electrospun fibers. Mater Lett 65:2231–2234

    Article  Google Scholar 

  336. Li D, Pang Z, Chen X, Luo L, Cai Y, Wei Q (2014) A catechol biosensor based on electrospun carbon nanofibers. Beilstein J Nanotechnol 5:346–354

    Article  Google Scholar 

  337. Nurfaizy AH, Tucker N, Stanger J, Staiger MP (2012) Functional nanofbers in clothing for protection against chemical and biological hazards. In: Wei Q (ed) Functional nanofibers and their applications. Woodhead Publishing, Cambridge, pp 236–261

    Google Scholar 

  338. Ko FK, Wan Y (2014) Nanofiber technology. In: Introduction to nanofiber materials. Cambridge University Press, Cambridge, pp 44–63

    Google Scholar 

  339. Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloids Surf A Physicochem Eng Asp 187:469–481

    Article  Google Scholar 

  340. Schreuder-Gibson H, Gibson P, Senecal K, Sennett M, Walker J, Yeomans W, Ziegler D, Tsai PP (2002) Protective textile materials based on electrospun nanofibers. J Adv Mater 34(3):44–55

    Google Scholar 

  341. Lee S, Obendorf SK (2007) Use of Electrospun nanofiber web for protective textile materials as barriers to liquid penetration. Text Res J 77:696–702

    Article  Google Scholar 

  342. Faccini M, Vaquero C, Amantia D (2012) Development of protective clothing against nanoparticle based on electrospun nanofibers. J Nanomater 2012, Article ID 892894

    Google Scholar 

  343. Vitchuli N, Shi Q, Nowak J, McCord M, Bourham M, Zhang X (2010) Electrospun ultrathin nylon fibers for protective applications. J Appl Polym Sci 116:2181–2187

    Google Scholar 

  344. Taepaiboon P, Rungsardthong U, Supaphol P (2007) Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur J Pharm Biopharm 67:387–397

    Article  Google Scholar 

  345. Camerlo A, Corinne VN, Rossi RM, Popa AM (2013) Fragrance encapsulation in polymeric matrices by emulsion electrospinning. Eur Polym J 49:3806–3813

    Article  Google Scholar 

  346. Fathi-Azarbayjani A, Qun L, Chan YW, Cha SY (2010) Novel vitamin and gold-loaded nanofiber facial mask for topical delivery. AAPS Pharm Sci Tech 11:1164–1170

    Article  Google Scholar 

  347. Sheng X, Fan L, He C, Zhang K, Mo X, Wang H (2013) Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application. Int J Biol Macromol 56:49–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mohammadzadehmoghadam, S. et al. (2016). Electrospinning: Current Status and Future Trends. In: Fakirov, S. (eds) Nano-size Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-39715-3_4

Download citation

Publish with us

Policies and ethics