Skip to main content

A Multi-agent Framework for Cost Estimation of Product Design

  • Conference paper
  • First Online:
Highlights of Practical Applications of Scalable Multi-Agent Systems. The PAAMS Collection (PAAMS 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 616))

  • 778 Accesses

Abstract

This paper presents the use of a multi-agent framework for evaluating parameters of new products and estimating cost of product design. Companies often develop many new product projects simultaneously. A limited budget of research and development imposes selection of the most promising projects. The evaluation of new product projects requires cost estimation and involves many agents that analyse the customer requirements and information acquired from an enterprise system, including the fields of sales and marketing, research and development, and manufacturing. The model of estimating product design cost is formulated in terms of a constraint satisfaction problem. The illustrative example presents the use of a fuzzy neural network to identify the relationships and estimate cost of product design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooper, R., Edgett, S.: Maximizing productivity in product innovation. Res. Technol. Manag. 51(2), 47–58 (2008)

    Google Scholar 

  2. Spalek, S.: Improving industrial engineering performance through a successful project management office. Eng. Econ. 24(2), 88–98 (2013)

    Article  Google Scholar 

  3. Relich, M., Bzdyra, K.: Knowledge discovery in enterprise databases for forecasting new product success. In: Jackowski, K., et al. (eds.) IDEAL 2015. LNCS, vol. 9375, pp. 121–129. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24834-9_15

    Chapter  Google Scholar 

  4. Ulrich, K.T., Eppinger, S.D.: Product Design and Development. McGraw-Hill, Boston (2011)

    Google Scholar 

  5. Anderson, D.M.: Design for Manufacturability: Optimizing Cost, Quality and Time-to-Market. CIM Press, Cambria (2001)

    Google Scholar 

  6. Yan, Y., Kuphal, T., Bode, J.: Application of multiagent systems in project management. Int. J. Prod. Econ. 68, 185–197 (2000)

    Article  Google Scholar 

  7. Bocewicz, G., Nielsen, I., Banaszak, Z.: Iterative multimodal processes scheduling. Annu. Rev. Control 38(1), 113–122 (2014)

    Article  Google Scholar 

  8. Relich, M., Swic, A., Gola, A.: A knowledge-based approach to product concept screening. In: Omatu, S., et al. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 373, pp. 341–348. Springer, Heidelberg (2016)

    Google Scholar 

  9. Madhusudan, T.: An agent-based approach for coordinating product design workflows. Comput. Ind. 56, 235–259 (2005)

    Article  Google Scholar 

  10. Fazel Zarandi, M.H., Ahmadpour, P.: Fuzzy agent-based expert system for steel making process. Expert Syst. Appl. 36, 9539–9547 (2009)

    Article  Google Scholar 

  11. Kishore, R., Zhang, H., Ramesh, R.: Enterprise integration using the agent paradigm: foundations of multi-agent-based integrative business information systems. Decis. Support Syst. 42(1), 48–78 (2006)

    Article  Google Scholar 

  12. Tweedale, J., Ichalkaranje, N., Sioutis, C., Jarvis, B., Consoli, A., Phillips-Wren, G.: Innovations in multi-agent systems. J. Netw. Comput. Appl. 30, 1089–1115 (2007)

    Article  Google Scholar 

  13. Liu, J., Chen, Z., Zhang, X., Liu, Z.: Neural-networks-based distributed output regulation of multi-agent systems with nonlinear dynamics. Neurocomputing 125, 81–87 (2014)

    Article  Google Scholar 

  14. Lopez-Ortega, O., Villar-Medina, I.: A multi-agent system to construct production orders by employing an expert system and a neural network. Expert Syst. Appl. 36, 2937–2946 (2009)

    Article  Google Scholar 

  15. Quteishat, A., Lim, C., Tweedale, J., Jain, L.: A neural network-based multi-agent classifier system. Neurocomputing 72, 1639–1647 (2009)

    Article  Google Scholar 

  16. Borrajo, L., Corchado, J., Corchado, E., Pellicer, M., Bajo, J.: Multi-agent neural business control system. Inf. Sci. 180, 911–927 (2010)

    Article  MathSciNet  Google Scholar 

  17. Lopez-Franco, M., Sanchez, E., Alanis, A., Lopez-Franco, C., Arana-Daniel, N.: Decentralized control for stabilization of nonlinear multi-agent systems using neural inverse optimal control. Neurocomputing 168, 81–91 (2015)

    Article  Google Scholar 

  18. Olajubu, E., Ajayi, O., Aderounmu, G.: A fuzzy logic based multi-agents controller. Expert Syst. Appl. 38, 4860–4865 (2011)

    Article  Google Scholar 

  19. Hanafizadeh, P., Sherkat, M.: Designing fuzzy-genetic learner model based on multi-agent systems in supply chain management. Expert Syst. Appl. 36, 10120–10134 (2009)

    Article  Google Scholar 

  20. Huang, C., Liang, W., Lai, Y., Lin, Y.: The agent-based negotiation process for B2C e-commerce. Expert Syst. Appl. 37, 348–359 (2010)

    Article  Google Scholar 

  21. Doskocil, R., Doubravsky, K.: Decision-making rules based on rough set theory: creditworthiness case study. In: Proceedings of the 24th International Business Information Management Association Conference, pp. 321–327, Milan (2014)

    Google Scholar 

  22. Jolly, K., Kumar, R., Vijayakumar, R.: Intelligent task planning and action selection of a mobile robot in a multi-agent system through a fuzzy neural network approach. Eng. Appl. Artif. Intell. 23, 923–933 (2010)

    Article  Google Scholar 

  23. Vatankhah, R., Etemadi, S., Alasty, A., Vossoughi, G.: Adaptive critic-based neuro-fuzzy controller in multi-agents: distributed behavioural control and path tracking. Neurocomputing 88, 24–35 (2012)

    Article  Google Scholar 

  24. Liu, H., Tang, M.: Evolutionary design in a multi-agent design environment. Appl. Soft Comput. 6, 207–220 (2006)

    Article  Google Scholar 

  25. Monticolo, D., Miaita, S., Darwich, H., Hilaire, V.: An agent-based system to build project memories during engineering projects. Knowl.-Based Syst. 68, 88–102 (2014)

    Article  Google Scholar 

  26. Zha, X.F.: A knowledge intensive multi-agent framework for cooperative/collaborative design modelling and decision support for assemblies. Knowl. Based Syst. 15, 493–506 (2002)

    Article  Google Scholar 

  27. Chu, C., Wu, P., Hsu, Y.: Multi-agent collaborative 3D design with geometric model at different levels of detail. Robot. Comput.-Integr. Manuf. 25, 334–347 (2009)

    Article  Google Scholar 

  28. Relich, M., Pawlewski, P.: A multi-agent system for selecting portfolio of new product development projects. In: Bajo, J., Hallenborg, K., Pawlewski, P., Botti, V., Sánchez-Pi, N., Duque Méndez, N.D., Lopes, F., Vicente, J. (eds.) PAAMS 2015 Workshops. CCIS, vol. 524, pp. 102–114. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  29. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier Science, Philadelphia (2006)

    MATH  Google Scholar 

  30. Relich, M.: A knowledge-based system for new product portfolio selection. In: Rozewski, P., et al. (eds.) New Frontiers in Information and Production Systems Modelling and Analysis. ISRL, vol. 98, pp. 169–187. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  31. Sitek, P., Wikarek, J.: A hybrid approach to the optimization of multiechelon systems. Mathematical Problems in Engineering 2015, Article ID 925675 (2015). doi:10.1155/2015/925675

    Google Scholar 

  32. Van Roy, P., Haridi, S.: Concepts, Techniques and Models of Computer Programming. Massachusetts Institute of Technology, Cambridge (2004)

    Google Scholar 

  33. Sitek, P.: A hybrid CP/MP approach to supply chain modelling, optimization and analysis. In: Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1345–1352 (2014)

    Google Scholar 

  34. Grzybowska, K.: Selected activity coordination mechanisms in complex systems. In: Bajo, J., Hallenborg, K., Pawlewski, P., Botti, V., Sánchez-Pi, N., Duque Méndez, N.D., Lopes, F., Vicente, J. (eds.) PAAMS 2015 Workshops. CCIS, vol. 524, pp. 69–79. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  35. Grzybowska, K.: Application of an electronic bulletin board, as a mechanism of coordination of actions in complex systems – reference model. LogForum 11(2), 151–158 (2015)

    Article  Google Scholar 

  36. Bocewicz, G., Nielsen, I., Banaszak, Z.: Automated guided vehicles fleet match-up scheduling with production flow constraints. Eng. Appl. Artif. Intell. 30, 49–62 (2014)

    Article  Google Scholar 

  37. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems. Kluwer Academic Publishers, Norwell (2001)

    Book  MATH  Google Scholar 

  38. Liu, J., Jing, H., Tang, Y.Y.: Multi-agent oriented constraint satisfaction. Artif. Intell. 136, 101–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Presented research works are partially carried out under the project – status activities of Faculty of Engineering Management DS 2016 Poznan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Relich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Relich, M., Pawlewski, P. (2016). A Multi-agent Framework for Cost Estimation of Product Design. In: Bajo, J., et al. Highlights of Practical Applications of Scalable Multi-Agent Systems. The PAAMS Collection. PAAMS 2016. Communications in Computer and Information Science, vol 616. Springer, Cham. https://doi.org/10.1007/978-3-319-39387-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39387-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39386-5

  • Online ISBN: 978-3-319-39387-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics