Skip to main content

Absorption of Carotenoids and Mechanisms Involved in Their Health-Related Properties

  • Chapter
  • First Online:
Carotenoids in Nature

Abstract

Carotenoids participate in the normal metabolism and function of the human body. They are involved in the prevention of several diseases, especially those related to the inflammation syndrome. Their main mechanisms of action are associated to their potent antioxidant activity and capacity to regulate the expression of specific genes and proteins. Recent findings suggest that carotenoid metabolites may explain several processes where the participation of their parent carotenoids was unclear. The health benefits of carotenoids strongly depend on their absorption and transformation during gastrointestinal digestion. The estimation of the ‘bioaccessibility’ of carotenoids through in vitro models have made possible the evaluation of the effect of a large number of factors on key stages of carotenoid digestion and intestinal absorption. The bioaccessibility of these compounds allows us to have a clear idea of their potential bioavailability, a term that implicitly involves the biological activity of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aherne SA, Jiwan MA, Daly T et al (2009) Geographical location has greater impact on carotenoid content and bioaccessibility from tomatoes than variety plant. Foods Hum Nutr 64:250–256

    Article  CAS  Google Scholar 

  • Arranz S, Martínez-Húelamo M, Vallverdu-Queralt A et al (2015) Influence of olive oil on carotenoid absorption from tomato juice and effects on postprandial lipemia. Food Chem 168:203–210

    Article  CAS  PubMed  Google Scholar 

  • Andersson SC, Olsson ME, Johansson E (2009) Carotenoids in sea buckthorn (Hippophae rhamnoides L.) berries during ripening and use of pheophytin a as a maturity marker. J Agric Food Chem 57:250–258

    Article  CAS  PubMed  Google Scholar 

  • Asai A, Yonekura L, Nagao A (2008) Low bioavailability of dietary epoxyxanthophyll in humans. Br J Nutr 100:273–277

    Article  CAS  PubMed  Google Scholar 

  • Aschoff JK, Kaufmann S, Kalkan O et al (2015) In vitro bioaccessibility of carotenoids, flavonoids, and vitamin c from differently processed oranges and orange juices [Citrus sinensis (L.) Osbeck]. J Agric Food Chem 63:578–587

    Article  CAS  PubMed  Google Scholar 

  • Azevedo-Meleiro CH, Rodriguez-Amaya DB (2005a) Carotenoid composition of kale as influenced by maturity, season and minimal processing. J Sci Food Agric 18:591–597

    Article  CAS  Google Scholar 

  • Azevedo-Meleiro CH, Rodriguez-Amaya DB (2005b) Carotenoids of endive and New Zealand spinach as affected by maturity, season and minimal processing. J Food Compost Anal 18:845–855

    Article  CAS  Google Scholar 

  • Bacchetti T, Tullii D, Masciagelo S et al (2014) Effect of black and red cabbage on plasma carotenoid levels, lipid profile and oxidized low density lipoprotein. J Func Food 8:128–137

    Article  CAS  Google Scholar 

  • Barua AB, Olson JA (2000) β-Carotene is converted primarily to retinoids in rats in vivo. J Nutr 130:1996–2001

    CAS  PubMed  Google Scholar 

  • Bechoff A, Dufour D, Dhuique-Mayer C (2009) Effect of hot air, solar and sun drying treatments on provitamin A retention of orange fleshed sweet potato. J Food Eng 92:164–171

    Article  Google Scholar 

  • Ben-Dor A, Steiner M, Gheber L et al (2005) Carotenoids activate the antioxidant response element transcription system. Mol Cancer Ther 4:177–186

    CAS  PubMed  Google Scholar 

  • Bengtsson A, Alminger ML, Svanberg U (2009) In vitro bioaccessibility of β-carotene from heat-processed orange-fleshed sweet potato. J Agric Food Chem 57:9693–9698

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson A, Brackmann C, Enejder A et al (2010) Effects of thermal processing on the in vitro bioaccessibility and microstructure of β-carotene in orange-fleshed sweet potato. J Agric Food Chem 58:11090–11096

    Article  CAS  PubMed  Google Scholar 

  • Biehler E, Kaulmann A, Hoffmann L et al (2011) Dietary and host-related factors influencing carotenoid bioaccessibility from spinach (Spinacia oleracea). Food Chem 125:1328–1334

    Article  CAS  Google Scholar 

  • Böhm F, Edge R, Truscott G (2012) Interactions of dietary carotenoids with activated (singlet) oxygen and free radicals: potential effects for human health. Mol Nutr Food Res 56:205–216

    Article  PubMed  CAS  Google Scholar 

  • Boileau AC, Merchen NR, Wasson K (1999) Cis-lycopene is more bioavailable than trans-lycopene in vitro and in vivo in lymph-cannulated ferrets. J Nutr 129:1176–1181

    CAS  PubMed  Google Scholar 

  • Bonnet C, Corredig M, Alexander M (2005) Stabilization of caseinate-covered oil droplets during acidification with high methoxyl pectin. J Agric Food Chem 53:8600–8606

    Article  CAS  PubMed  Google Scholar 

  • Borel P (2012) Genetic variations involved in interindividual variability in carotenoid status. Mol Nutr Food Res 56:228–240

    Article  CAS  PubMed  Google Scholar 

  • Borel P, Moussa M, Reboul E et al (2007) Human plasma levels of vitamin E and carotenoids are associated with genetic polymorphisms in genes involved in lipid metabolism. J Nutr 137:2653–2659

    CAS  PubMed  Google Scholar 

  • Bramley PM, Elmadfa I, Kafatos A et al (2000) Vitamin E. J Sci Food Agric 80:913–938

    Article  CAS  Google Scholar 

  • Breithaupt DE, Bamedi A, Wirt U (2002) Carotenol fatty acid esters: easy substrates for digestive enzymes? Comp Biochem Physiol B Biochem Mol Biol 132:721–728

    Article  PubMed  Google Scholar 

  • Breithaupt DE, Weller P, Wolters M et al (2003) Plasma response to a single dose of dietary β-cryptoxanthin esters from papaya (Carica papaya L.) or non-esterified β-cryptoxanthin in adult human subjects: a comparative study. Br J Nutr 90:795–801

    Article  CAS  PubMed  Google Scholar 

  • Brown MJ, Ferruzzi MG, Nguyen ML et al (2004) Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am J Clin Nutr 80:396–403

    CAS  PubMed  Google Scholar 

  • Bub A, Watzl B, Abrahamse L et al (2000) Moderate intervention with carotenoid-rich vegetable products reduces lipid peroxidation in men. J Nutr 130:2200–2206

    CAS  PubMed  Google Scholar 

  • Burgos G, Muñoa L, Sosa P et al (2013) In vitro bioaccessibility of lutein and zeaxanthin of yellow fleshed boiled potatoes. Plant Foods Hum Nutr 68:385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caris-Veyrat C (2010) Formation of carotenoid oxygenated cleavage products. In: Landrum JT (ed) Carotenoids. Physical, chemical and biological functions and properties, 1st edn. CRC Press, Boca Raton, pp 215–228

    Google Scholar 

  • Castenmiller JJM, West CE (1998) Bioavailability and bioconversion of carotenoids. Annu Rev Nutr 18:19–38

    Article  CAS  PubMed  Google Scholar 

  • Castenmiller JM, West CE, Linssen JPH et al (1999) The food matrix of spinach is a limiting factor in determining the bioavailability of β-carotene and to a lesser extent of lutein in humans. J Nutr 129:349–355

    CAS  PubMed  Google Scholar 

  • Carrillo-Lopez A, Yahia EM, Ramirez-Padilla GK (2010) Bioconversion of carotenoids in five fruits and vegetables to vitamin A measured by retinol accumulation in rat livers. Am J Agri Biol Sci 5:215–221

    Article  CAS  Google Scholar 

  • Cerhan JR, Saag KG, Merlino LA et al (2003) Antioxidant micronutrients and risk of rheumathoid arthritis in a cohort older women. Am J Epidemiol 157:345–354

    Article  PubMed  Google Scholar 

  • Cervantes-Paz B, Yahia EM, Ornelas-Paz J de J et al (2012) Effect of heat processing on the profile of pigments and antioxidant capacity of green and red Jalapeño peppers. J Agric Food Chem 60:10822–10833

    Article  CAS  PubMed  Google Scholar 

  • Cervantes-Paz B, Yahia EM, Ornelas-Paz J de J et al (2014) Antioxidant activity and content of chlorophylls and carotenoids in raw and heat-processed Jalapeño peppers at intermediate stages of ripening. Food Chem 146:188–196

    Article  CAS  PubMed  Google Scholar 

  • Chandrika UG, Fernando KSSP, Ranaweera KKDS (2009) Carotenoid content and in vitro bioaccessibility of lycopene from guava (Psidium guajava) and watermelon (Citrullus lanatus) by high-performance liquid chromatography diode array detection. Int J Food Sci Nutr 60:558–566

    Article  CAS  PubMed  Google Scholar 

  • Chitchumroonchokchai C, Failla ML (2006) Hydrolysis of zeaxanthin esters by carboxyl ester lipase during digestion facilitates micellarization and uptake of the xanthophyll by Caco-2 human intestinal cells. J Nutr 136:588–594

    CAS  PubMed  Google Scholar 

  • Cilla A, Alegría A, de Ancos B et al (2012) Bioaccessibility of tocopherols, carotenoids, and ascorbic acid from milk- and soy-based fruit beverages: influence of food matrix and processing. J Agric Food Chem 2012(60):7282–7290

    Article  CAS  Google Scholar 

  • Colle IJP, Lemmens L, Van Buggenhout S et al (2013) Processing tomato pulp in the presence of lipids: the impact on lycopene bioaccessibility. Food Res Int 51:32–38

    Article  CAS  Google Scholar 

  • Colle I, Lemmens L, Van Buggenhout S et al (2010) Effect of thermal processing on the degradation, isomerization, and bioaccessibility of lycopene in tomato pulp. J Food Sci 75:C753–C759

    Article  CAS  PubMed  Google Scholar 

  • Colle IJP, Van Buggenhout S, Lemmens L et al (2012) The type and quantity of lipids present during digestion influence the in vitro bioaccessibility of lycopene from raw tomato pulp. Food Res Int 45:250–255

    Article  CAS  Google Scholar 

  • Cooperstone JL, Ralston RA, Riedl KM et al (2015) Enhanced bioavailability of lycopene when consumed as cis-isomers from tangerine compared to red tomato juice, a randomized, cross-over clinical trial. Mol Nutr Food Res 59:658–669. doi:10.1002/mnfr.201400658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costenbader KH, Kang JH, Karlson EW (2010) Antioxidant intake and risks of rheumatoid arthritis and systemic lupus erythematosus in women. Am J Epidemiol 172:205–216

    Article  PubMed  PubMed Central  Google Scholar 

  • Daly T, Jiwan MA, O’Brien NM et al (2010) Carotenoid content of commonly consumed herbs and assessment of their bioaccessibility using an in vitro digestion model. Plant Foods Hum Nutr 65:164–169

    Article  CAS  PubMed  Google Scholar 

  • De Pee S, West CE, Permaesih D et al (1998) Increasing intake of orange fruits is more effective than increasing take of dark-green leafy vegetables in increasing serum concentrations of retinol and β-carotene in schoolchildren in Indonesia. Am J Clin Nutr 68:1058–1067

    PubMed  Google Scholar 

  • De Roeck A, Sila DN, Duvetter T et al (2008) Effect of high pressure/high temperature processing on cell wall pectic substances in relation to firmness of carrot tissue. Food Chem 107:1225–1235

    Article  CAS  Google Scholar 

  • Deli J, Matus Z, Tóth G (1996) Carotenoid composition in fruits of Capsicum annuum Cv. Szentesi Kosszarvú during ripening. J Agric Food Chem 44:711–716

    Article  CAS  Google Scholar 

  • Dhuique-Mayer C, Borel P, Reboul E et al (2007) β-Cryptoxanthin from citrus juices: assessment of bioaccessibility using an in vitro digestion/Caco-2 cell culture model. Br J Nutr 97:883–890

    Article  CAS  PubMed  Google Scholar 

  • Dongowski G (1995) Influence of pectin structure on the interaction with bile acids under in vitro conditions. Z Lebensm Unters Forsch 201:390–398

    Article  CAS  PubMed  Google Scholar 

  • Dongowski G, Neubert R, Haase H et al (1996) Interactions between food components and drugs. Part 4: influence of pectins and bile salts on propranolol absorption. Int J Pharm 144:233–239

    Article  CAS  Google Scholar 

  • Dugas TR, Morel DW, Harrison EH (1999) Dietary supplementation with β-carotene, but not with lycopene, inhibits endothelial cell-mediated oxidation of low-density lipoprotein. Free Rad Biol Med 26:1238–1244

    Article  CAS  PubMed  Google Scholar 

  • During A, Doraiswamy S, Harrison EH (2008) Xanthophylls are preferentially taken up compared with β-carotene by retinal cells via SRBI-dependent mechanism. J Lipid Res 49:1715–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • During A, Hussain MM, Morel DW et al (2002) Carotenoid uptake and secretion by CaCo-2 cells: β-carotene isomer selectivity and carotenoid interaction. J Lipid Res 43:1086–1095

    Article  CAS  PubMed  Google Scholar 

  • Edge R, Truscott G (2010) Properties of carotenoid radicals and excited states and their potential role in biological systems. In: Landrum JT (ed) Carotenoids. Physical, chemical and biological functions and properties, 1st edn. CRC Press, Florida, pp 283–304

    Google Scholar 

  • Ekesa B, Poulaert M, Davey MW (2012) Bioaccessibility of provitamin A carotenoids in bananas (Musa spp.) and derived dishes in African countries. Food Chem 133:1471–1477

    Article  CAS  Google Scholar 

  • El-Agamey A, Lowe GM, McGarvey DJ et al (2004) Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430:37–48

    Article  CAS  PubMed  Google Scholar 

  • Eliassen AH, Hendrickson SJ, Brinton LA et al (2012) Circulating carotenoids and risk for breast cancer: pooled analysis of eight prospective studies. J Natl Cancer Inst 104:1905–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott R (2005) Mechanisms of genomic and non-genomic actions of carotenoids. Biochim Biophys Acta 1740:147–154

    Article  CAS  PubMed  Google Scholar 

  • Etoh H, Utsunomiya Y, Komori A et al (2000) Carotenoids in human blood plasma after ingested paprika juice. Biosci Biotechnol Biochem 64:1096–1098

    Article  CAS  PubMed  Google Scholar 

  • Failla ML, Chitchumroonchokchai C (2005) In vitro models as tools for screening the relative bioavailabilities of provitamin A carotenoids, HarvestPlus technical monograph 3. International Food Policy Research Institute, Washington, DC, pp 1–31

    Google Scholar 

  • Failla ML, Chitchumronchokchai C, Ferruzzi MG et al (2014) Unsaturated fatty acids promote bioaccessibility and basolateral secretion of carotenoids and α-tocopherol by Caco-2 cells. Food Funct 5:1101–1112

    Article  CAS  PubMed  Google Scholar 

  • Failla ML, Huo T, Thakkar SK (2008) In vitro screening of relative bioaccessibility of carotenoids from foods. Asia Pac J Clin Nutr 17:200–220

    CAS  PubMed  Google Scholar 

  • Faulks RM, Hart DJ, Scott J et al (1998) Changes in plasma carotenoid and vitamin E profile during supplementation with oil palm fruit carotenoids. J Lab Clin Med 132:507–511

    Article  CAS  PubMed  Google Scholar 

  • Faulks R, Hart DJ, Wilson PDG et al (1997) Absorption of all-trans 9-cis-β-carotene in human ileostomy volunteers. Clin Sci 93:585–591

    Article  CAS  PubMed  Google Scholar 

  • Fernández-García E, Carvajal-Lérida I, Jarén-Galán M et al (2012) Carotenoids bioavailability from foods: from plant pigments to efficient biological activities. Food Res Int 46:438–450

    Article  CAS  Google Scholar 

  • Fleshman MK, Lester GE, Riedl KM et al (2011) Carotene and novel apocarotenoid concentrations in orange-fleshed Cucumis melo melons: determinations of β-Carotene bioaccessibility and bioavailability. J Agric Food Chem 59:4448–4454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford NA, Elsen AC, Zuñiga K et al (2011) Lycopene and apo-12-ycopenal reduce cell proliferation and alter cell cycle progression in human prostate cancer cells. Nutr Cancer 63:256–263

    Article  CAS  PubMed  Google Scholar 

  • Furr HC, Clark RM (1997) Intestinal absorption and tissue distribution of carotenoids. J Nutr Biochem 8:364–377

    Article  CAS  Google Scholar 

  • Gajic M, Zaripheh S, Sun F et al (2006) Apo-8′-lycopenal and apo-12′-lycopenal are metabolic products of lycopene in rat liver. J Nutr 136:1552–1557

    CAS  PubMed  Google Scholar 

  • Gale CR, Hall NF, Phillips DIW et al (2001) Plasma antioxidant vitamins and carotenoids and age-related cataract. Ophthalmology 108:1992–1998

    Article  CAS  PubMed  Google Scholar 

  • Giovannucci E (1999) Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J Natl Cancer Inst 91:317–331

    Article  CAS  PubMed  Google Scholar 

  • Gleize B, Tourniaire F, Depezay L et al (2013) Effect of type of TAG fatty acids on lutein and zeaxanthin bioavailability. Brit J Nutr 110:1–10

    Article  CAS  PubMed  Google Scholar 

  • Goltz SR, Campbell WW, Chitchumroonchokchai C et al (2012) Meal triacylglycerol profile modulates postprandial absorption of carotenoids in humans. Mol Nutr Food Res 56:866–877

    Article  CAS  PubMed  Google Scholar 

  • Goltz S, Sapper T, Failla ML et al (2013) Carotenoid bioavailability from raw vegetables and a moderate amount of oil in human subjects is greatest when the majority of daily vegetables are consumed at one meal. Nutr Res 33:358–386

    Article  CAS  PubMed  Google Scholar 

  • Gomes S, Torres AG, Godoy R et al (2013) Effects of boiling and frying on the bioaccessibility of β-carotene in yellow-fleshed cassava roots (Manihot esculenta Crantz cv. BRS Jari). Food Nutr Bull 34:65–75

    Article  PubMed  Google Scholar 

  • Granado F, Olmedilla B, Gil-Martínez E et al (1998) Lutein ester in serum after supplementation in human subjects. Br J Nutr 88:445–449

    Google Scholar 

  • Granado-Lorencio F, Herrero-Barbudo C, Blanco-Navarro I et al (2009) Bioavailability of carotenoids and α-tocopherol from fruit juices in the presence of absorption modifiers: in vitro and in vivo assessment. Br J Nutr 101:476–582

    Article  CAS  Google Scholar 

  • Granado-Lorencio F, Herrero-Barbudo C, Olmedilla-Alonso B et al (2010) Lutein bioavailability from lutein ester-fortified fermented milk: in vivo and in vitro study. J Nutr Biochem 21:133–139

    Article  CAS  PubMed  Google Scholar 

  • Granado-Lorencio F, Olmedilla-Alonso B, Herrero-Barbudo C et al (2008) Modified-atmosphere packaging (MAP) does not affect the bioavailability of tocopherols and carotenoids from broccoli in humans: a cross-over study. Food Chem 106:1070–1076

    Article  CAS  Google Scholar 

  • Gross KC, Sams CE (1984) Changes in cell wall neutral sugar composition during fruit ripening: a species survey. Phytochemistry 11:2457–2461

    Article  Google Scholar 

  • Guyton AC, Hall JE (2001) Digestión y absorción en el tubo digestivo. In: Guyton AC, Hall JE (eds) Tratado de Fisiología Médica, 10th edn. McGraw-Hill, New York

    Google Scholar 

  • Hantz HL, Young LF, Martin KR (2005) Physiologically attainable concentrations of lycopene induce mitochondrial apoptosis in LNCaP human prostate cancer cells. Exp Biol Med 230:171–179

    CAS  Google Scholar 

  • Harrison EH (2012) Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. Biochim Biophys Acta 1821:70–77

    Article  CAS  PubMed  Google Scholar 

  • Heliövaara M, Knekt P, Aho K et al (1994) Serum antioxidants and risk of rheumatoid arthritis. Ann Rheum Dis 53:51–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Herron KL, McGrane MM, Waters D et al (2006) The ABCG5 polymorphism contributes to individual responses to dietary cholesterol and carotenoids in eggs. J Nutr 136:1161–1165

    CAS  PubMed  Google Scholar 

  • Hervert-Hernández D, Sáyago-Ayerdi SG, Goñi I (2010) Bioactive compounds of four hot pepper varieties (Capsicum annuum L.), antioxidant capacity, and intestinal bioaccessibility. J Agric Food Chem 58:3399–3406

    Article  PubMed  CAS  Google Scholar 

  • Hiranvarachat B, Devahastin S, Chiewchan N (2012) In vitro bioaccessibility of β-carotene in dried carrots pretreated by different methods. Int J Food Sci Tech 47:535–541

    Article  CAS  Google Scholar 

  • Ho CC, de Moura FF, Kim SH et al (2007) Excentral cleavage of β-carotene in vivo in a healthy man. Am J Clin Nutr 85:770–777

    CAS  PubMed  Google Scholar 

  • Hollander D, Wang HP, Chin CYT et al (1978) Preliminary characterization of a small intestinal binding component for retinol and fatty acids in the rat. Life Sci 23:1011–1018

    Article  CAS  PubMed  Google Scholar 

  • Honero-Méndez D, Mínguez-Mosquera MI (2007) Bioaccessibility of carotenes from carrots: effect of cooking and addition of oil. Innov Food Sci Emerg 8:407–412

    Article  CAS  Google Scholar 

  • Hu KQ, Liu C, Ernst H et al (2006) The biochemical characterization of ferret carotene-9, 10-monooxygenase catalyzing cleavage of carotenoids in vitro and in vivo. J Biol Chem 281:19327–19338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huo T, Ferruzzi MG, Schwartz SJ (2007) Impact of fatty acyl composition and quantity of triglycerides on bioaccessibility of dietary carotenoids. J Agric Food Chem 55:8950–8957

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Kurata M, Suzuki K et al (2006) Cardiovascular disease mortality and serum carotenoid levels: a Japanese population-based follow-up study. J Epidemiol 16:154–160

    Article  PubMed  Google Scholar 

  • Jaramillo MC, Zhang DD (2013) The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27:2179–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffery JL, Turner ND, King SR (2012) Carotenoid bioaccessibility from nine raw carotenoid-storing fruits and vegetables using an in vitro model. J Sci Food Agric 92:2603–2610

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Jimenéz FJ, Molina JA, de Bustos F et al (1999) Serum levels of β-carotene, α-carotene and vitamin A in patients with Alzheimer’s disease. Eur J Neurol 6:495–497

    Article  PubMed  Google Scholar 

  • Karas M, Amir H, Fishman D et al (2000) Lycopene interferes with cell cycle progression and insulin-like growth factor I signaling in mammary cancer cells. Nutr Cancer 36:101–111

    Article  CAS  PubMed  Google Scholar 

  • Kaulmann A, Bohn T (2014) Carotenoids, inflammation, and oxidative stress—implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res 34:907–929

    Article  CAS  PubMed  Google Scholar 

  • Khachik F, Beecher GR, Goli MB et al (1992) Separation and identification of carotenoids and their oxidation products in the extracts of human plasma. Anal Chem 64:2111–2122

    Article  CAS  PubMed  Google Scholar 

  • Khachik F, Beecher GR, Goli MB et al (1991) Separation, identification, and quantification of carotenoids in fruits, vegetables and human plasma by high performance liquid chromatography. Pure Appl Chem 63:71–80

    Article  CAS  Google Scholar 

  • Kiefer C, Hessel S, Lampert JM et al (2001) Identification and characterization of a mammalian enzyme catalyzing the asymmetric oxidative cleavage of provitamin A. J Biol Chem 276:14110–14116

    CAS  PubMed  Google Scholar 

  • Kim GY, Kim JH, Ahn SC et al (2004) Lycopene suppresses the lipopolysaccharide-induced phenotypic and functional maturation of murine dendritic cells through inhibition of mitogen-activated protein kinases and nuclear factor-kB. Immunology 113:203–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knockaert G, Lemmens L, Van Buggenhout S et al (2012a) Changes in β-carotene bioaccessibility and concentration during processing of carrot puree. Food Chem 133:60–67

    Article  CAS  Google Scholar 

  • Knockaert G, Pulissery SK, Colle I et al (2012b) Lycopene degradation, isomerization and in vitro bioaccessibility in high pressure homogenized tomato puree containing oil: effect of additional thermal and high pressure processing. Food Chem 135:1290–1297

    Article  CAS  PubMed  Google Scholar 

  • Koh WP, Yuan JM, Wang R et al (2011) Plasma carotenoids and risk of acute myocardial infarction in the Singapore Chinese Health Study. Nutr Metab Cardiovasc Dis 21:685–690

    Article  CAS  PubMed  Google Scholar 

  • Kohlmeier L, Kark JD, Gomez-Garcia E et al (1997) Lycopene and myocardial infarction risk in the EURAMIC study. Am J Epidemiol 146:618–626

    Article  CAS  PubMed  Google Scholar 

  • Kopec RE, Riedl KM, Harrison EH et al (2010) Identification and quantification of apo-lycopenals in fruits, vegetables, and human plasma. J Agric Food Chem 58:3290–3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacova R, Synytsya A, Stetina J (2009) Characterisation of whey proteins–pectin interaction in relation to emulsifying properties of whey proteins. Czech J Food Sci 27:S4–S8

    Google Scholar 

  • Krinsky NI, Landrum JT, Bone RA (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 23:171–201

    Article  CAS  PubMed  Google Scholar 

  • Lakshminarayana R, Raji M, Parthasarathy T et al (2007) Lutein and zeaxanthin in leafy greens and their bioavailability: olive oil influences the absorption of dietary lutein and its accumulation in adult rats. J Agric Food Chem 55:6395–6400

    Article  CAS  PubMed  Google Scholar 

  • Lemmens L, Van Buggenhout S, Oey I et al (2009) Towards a better understanding of the relationship between the β-carotene in vitro bio-accessibility and pectin structural changes: a case study on carrots. Food Res Int 42:1323–1330

    Article  CAS  Google Scholar 

  • Lemmens L, Van Buggenhout S, Van Loey AM et al (2010) Particle size reduction leading to cell wall rupture is more important for the β-carotene bioaccessibility of raw compared to thermally processed carrots. J Agric Food Chem 58:12769–12776

    Article  CAS  PubMed  Google Scholar 

  • Leroux J, Langendorff V, Schick G et al (2003) Emulsion stabilizing properties of pectin. Food Hydrocol 17:455–462

    Article  CAS  Google Scholar 

  • Lian F, Smith DE, Erns H et al (2007) Apo-10′-lycopenoic acid inhibits lung cancer cell growth in vitro, and suppresses lung tumorigenesis in the A/J mouse model in vivo. Carcinogenesis 28:1567–1574

    Article  CAS  PubMed  Google Scholar 

  • Lindqvist A, Andersson S (2004) Cell type-specific expression of β-carotene 15,15′-mono-oxygenase in human tissues. J Histochem Cytochem 52:491–499

    Article  CAS  PubMed  Google Scholar 

  • Liu CL, Huang YS, Hosokawa M et al (2009) Inhibition of proliferation of a hepatoma cell line by fucoxanthin in relation to cell cycle arrest and enhanced gap junctional intercellular communication. Chem Biol Interact 182:165–172

    Article  CAS  PubMed  Google Scholar 

  • Livny O, Kaplan I, Reifen R et al (2002) Lycopene inhibits proliferation and enhances gap-junction communication of KB-1 human oral tumor cells. J Nutr 132:3754–3759

    CAS  PubMed  Google Scholar 

  • Livny O, Reifen R, Levy I et al (2003) β-carotene bioavailability from differently processed carrot meals in human ileostomy volunteers. Eur J Nutr 42:338–345

    Article  CAS  PubMed  Google Scholar 

  • Lo HM, Chen CL, Yang CM et al (2013) The carotenoid lutein enhances matrix metalloproteinase-9 production and phagocytosis through intracellular ROS generation and ERK1/2, p38 MAPK, and RARβ activation in murine macrophages. J Leukoc Biol 93:723–735

    Article  CAS  PubMed  Google Scholar 

  • Lobo GP, Hessel S, Eichinger A et al (2010) ISX is a retinoic acid-sensitive gatekeeper that controls intestinal β, β-carotene absorption and vitamin A production. FASEB J 24:1656–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyle BJ, Mares-Perlman JA, Klein BE et al (1999) Antioxidant intake and risk of incident age-related nuclear cataracts in the Beaver Dam Eye Study. Am J Epidemiol 149:801–809

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Lin XM (2010) Effects of lutein and zeaxanthin on aspects of eye health. J Sci Food Agric 90:2–12

    Article  CAS  PubMed  Google Scholar 

  • McGrane MM (2007) Vitamin A regulation of gene expression: molecular mechanism of a prototype gene. J Nutr Biochem 18:497–508

    Article  CAS  PubMed  Google Scholar 

  • Mecocci P, Polidori MC, Cherubini A et al (2002) Lymphocyte oxidative DNA damage and plasma antioxidants in Alzheimer disease. Arch Neurol 59:794–798

    Article  PubMed  Google Scholar 

  • Meinke MC, Darvin ME, Bollert H (2010) Bioavailability of natural carotenoids in human skin compared to blood. Eur J Pharm Biopharm 76:269–274

    Article  CAS  PubMed  Google Scholar 

  • Merry P, Winyard PG, Morris CJ et al (1989) Oxygen free radicals, inflammation, and synovitis: the current status. Ann Rheum Dis 48:864–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micozzi MS, Brown ED, Edwards BK et al (1992) Plasma carotenoid response to chronic intake of selected foods and β-carotene supplements in men. Am J Clin Nutr 55:1120–1125

    CAS  PubMed  Google Scholar 

  • Mínguez-Mosquera MI, Hornero-Méndez D (1994a) Changes in carotenoid esterification during the fruit ripening of Capsicum annuum Cv. Bola. J Agric Food Chem 42:640–644

    Article  Google Scholar 

  • Mínguez-Mosquera MI, Hornero-Méndez D (1994b) Formation and transformation of pigments during the fruit ripening of Capsicum annuum Cv. Bola and Agridulce. J Agric Food Chem 42:38–44

    Article  Google Scholar 

  • Montefiori M, McGhie TK, Hallett IC et al (2009) Changes in pigments and plastid ultrastructure during ripening of green-fleshed and yellow-fleshed kiwifruit. Sci Hortic 119:377–387

    Article  CAS  Google Scholar 

  • Moore AC, Gugger ET, Erdman JW (1996) Brush border membrane vesicles from rats and gerbils can be utilized to evaluate the intestinal uptake of all-trans and 9-cis-β-carotene. J Nutr 126:2904–2912

    CAS  PubMed  Google Scholar 

  • Moussa M, Landrier JF, Reboul E et al (2008) Lycopene absorption in human intestinal cells and in mice involves scavenger receptor class B type I but not Niemann-Pick C1-like 1. J Nutr 138:1432–1436

    CAS  PubMed  Google Scholar 

  • Mucci LA, Tamimi R, Lagiou P et al (2001) Are dietary influences on the risk of prostate cancer mediated through the insulin-like growth factor system. BJU Int 87:814–820

    Article  CAS  PubMed  Google Scholar 

  • Nagao A, During A, Hoshino C et al (1996) Stoichiometric conversion of all-trans-β-carotene to retinal by pig intestinal extract. Arch Biochem Biophys 328:57–63

    Article  CAS  PubMed  Google Scholar 

  • Nagao A, Kotake-Nara E, Hase M (2013) Effects of fats and oils on the bioaccessibility of carotenoids and vitamin E vegetables. Biosci Biotechnol Biochem 77:1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa K, Kiko T, Miyazawa T et al (2011) Amyloid β-induced erythrocytic damage and its attenuation by carotenoids. FEBS Lett 585:1249–1254

    Article  CAS  PubMed  Google Scholar 

  • Netzel M, Netzel G, Zabaras D et al (2011) Release and absorption of carotenes from processed carrots (Daucus carota) using in vitro digestion coupled with a Caco-2 cell trans-well culture model. Food Res Int 44:868–874

    Article  CAS  Google Scholar 

  • Niranjana R, Gayathri R, Mol SN et al (2014) Carotenoids modulate the hallmarks of cancer cells. J Funct Foods 18:968–985. doi:10.1016/j.jff.2014.10.017

    Article  CAS  Google Scholar 

  • Obulesu M, Dowlathabad MR, Bramhachari PV (2011) Carotenoids and Alzheimer’s disease: and insight into therapeutic role of retinols in animal models. Neurochem Int 59:535–541

    Article  CAS  PubMed  Google Scholar 

  • O’Connell OF, Ryan L, O’Brien NM (2007) Xanthophyll carotenoids are more bioaccessible from fruits than dark green vegetables. Nutr Res 27:258–264

    Article  CAS  Google Scholar 

  • Omenn GS, Goodman GE, Thornquist MD et al (1996) Risk factors for lung cancer and for intervention effects in CARET, the beta-carotene and retinol efficacy trial. J Natl Cancer Inst 88:1550–1559

    Article  CAS  PubMed  Google Scholar 

  • Ornelas-Paz J de J, Failla ML, Yahia EM et al (2008) Impact of the stage of ripening and dietary fat on in vitro bioaccessibility of β-carotene in ‘Ataulfo’ Mango. J Agric Food Chem 56:1511–1516

    Google Scholar 

  • Ornelas-Paz J de J, Yahia EM, Gardea-Bejar AA (2010) Bioconversion efficiency of β-carotene from mango fruit and carrots in vitamin A. Am J Agric Biol Sci 5:301–308

    Google Scholar 

  • O’Sullivan L, Jiwan MA, Daly T et al (2010) Bioaccessibility, uptake, and transport of carotenoids from peppers (Capsicum spp.) using the coupled in vitro digestion and human intestinal Caco-2 cell model. J Agric Food Chem 58:5374–5379

    Article  PubMed  CAS  Google Scholar 

  • Palczewski G, Amengual J, Hoppel CL et al (2014) Evidence for compartmentalization of mammalian carotenoid metabolism. FASEB J 28:4457–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palozza P, Serini S, Torsello A et al (2003) Mechanism of activation of caspase cascade during β-carotene-induced apoptosis in human tumor cells. Nutr Cancer 47:76–87

    Article  CAS  PubMed  Google Scholar 

  • Palmero P, Lemmens L, Hendrickx M et al (2014) Role of carotenoid type on the effect of thermal processing on bioaccessibility. Food Chem 157:275–282

    Article  CAS  PubMed  Google Scholar 

  • Panozzo A, Lemmens L, Van Loey A et al (2013) Microstructure and bioaccessibility of different carotenoid species as affected by high pressure homogenisation: a case study on differently coloured tomatoes. Food Chem 141:4094–4100

    Article  CAS  PubMed  Google Scholar 

  • Parker RS (1996) Absorption, metabolisms, and transport of carotenoids. FASEB J 10:542–551

    CAS  PubMed  Google Scholar 

  • Pasquier B, Armand M, Guillon F (1996) Viscous soluble dietary fibers alter emulsification and lipolysis of triacylglycerols in duodenal medium in vitro. J Nutr Biochem 7:293–302

    Article  CAS  Google Scholar 

  • Ramos-Aguilar OP, Ornelas-Paz J de J, Ruiz-Cruz SR et al (2015) Effect of ripening and heat processing of the physicochemical and rheological properties of pepper pectins. Carbohydr Polym 115:112–121

    Article  CAS  PubMed  Google Scholar 

  • Rao AR, Baskaran V, Rarada R et al (2013) In vivo bioavailability and antioxidant activity of carotenoids from microalgal biomass – a repeated dose study. Food Res Int 54:711–717

    Article  CAS  Google Scholar 

  • Rao AR, Reddy RLR, Baskaran V et al (2010) Characterization of microalgal carotenoids by mass spectrometry and their bioavailability and antioxidant properties elucidated in rat model. J Agric Food Chem 58:8553–8559

    Article  CAS  Google Scholar 

  • Reboul E (2013) Absorption of vitamin A and carotenoids by enterocyte: focus on transport proteins. Nutrients 5:3563–3581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reboul E, Borel P (2011) Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog Lipid Res 50:388–402

    Article  CAS  PubMed  Google Scholar 

  • Reboul E, Abou L, Mikail C et al (2005) Lutein transport by Caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type I (SR-BI). Biochem J 387:455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reboul E, Richelle M, Perrot E et al (2006) Bioaccessibility of carotenoids and vitamin E from their main dietary sources. J Agric Food Chem 54:8749–8755

    Article  CAS  PubMed  Google Scholar 

  • Riedl J, Linseisen J, Hoffmann J (1999) Some dietary fibers reduce the absorption of carotenoids in women. J Nutr 129:2170–2176

    CAS  PubMed  Google Scholar 

  • Redgwell R, MacRae E, Hallett I et al (1997) In vivo and in vitro swelling of cell walls during fruit ripening. Planta 203:162–173

    Article  CAS  Google Scholar 

  • Ribaya-Mercado JD, Maramag CC, Tengco LW et al (2007) Carotene-rich plant foods ingested with minimal dietary fat enhance the total-body vitamin A pool size in Filipino schoolchildren as assessed by stable-isotope-dilution methodology. Am J Clin Nutr 85:1041–1049

    CAS  PubMed  Google Scholar 

  • Roodenburg AJC, Leenen R, van het Hof KH et al (2000) Amount of fat in the diet affects bioavailability of lutein esters but not of α-carotene, β-carotene, and vitamin E in humans. Am J Clin Nutr 71:1187–1193

    CAS  PubMed  Google Scholar 

  • Rodriguez-Amaya DB (1999) Changes in carotenoids during processing and storage of foods. ALAN 49:38–47

    Google Scholar 

  • Rodriguez-Amaya DB, Kimura M (2004) HarvestPlus handbook for carotenoid analysis, HarvestPlus technical monograph 2. International Food Policy Research Institute (IFPRI) and International Center for Tropical Agriculture (CIAT), Washington, DC/Cali

    Google Scholar 

  • Rodríguez-Roque MJ, Rojas-Graü MA, Elez-Martínez P et al (2014) In vitro bioaccessibility of health-related compounds as affected by the formulation of fruit juice- and milk-based beverages. Food Res Int 62:771–778

    Article  CAS  Google Scholar 

  • Rodríguez-Roque MJ, Rojas-Graü MA, Elez-Martínez P et al (2013) Changes in vitamin C, phenolic, and carotenoid profiles throughout in vitro gastrointestinal digestion of a blended fruit juice. J Agric Food Chem 61:1859–1867

    Article  PubMed  CAS  Google Scholar 

  • Rock CL, Swendseid ME (1992) Plasma β-carotene response in humans after meals supplemented with dietary pectin. Am J Clin Nutr 55:96–99

    CAS  PubMed  Google Scholar 

  • Rokkaku T, Kimura R, Ishikawa C et al (2013) Anticancer effects of marine carotenoids, fucoxanthin and its deacetylated product, fucoxanthinol, on osteosarcoma. Int J Oncol 43:1176–1186

    CAS  PubMed  Google Scholar 

  • Ryan L, O’Connell O, O’Sullivan L et al (2008) Micellarisation of carotenoids from raw and cooked vegetables. Plant Foods Hum Nutr 63:127–133

    Article  CAS  PubMed  Google Scholar 

  • Schalch W, Bone R, Landrum JT (2010) The functional role of xanthophylls in the primate retina. In: Landrum JT (ed) Carotenoids. Physical, chemical and biological functions and properties, 1st edn. CRC Press, Boca Raton, pp 258–282

    Google Scholar 

  • Schweiggert RM, Kopec RE, Villalobos-Gutierrez MG et al (2014) Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: a randomised cross-over study. Br J Nutr 111:490–498

    Article  CAS  PubMed  Google Scholar 

  • Schweiggert RM, Mezger D, Schimpf F et al (2012) Influence of chromoplast morphology on carotenoid bioaccessibility of carrot, mango, papaya, and tomato. Food Chem 135:2736–2742

    Article  CAS  PubMed  Google Scholar 

  • Seddon JM, Ajani UA, Sperduto RD et al (1994) Dietary carotenoids, vitamins A, C, and E and advanced age-related macular degeneration. JAMA 272:1413–1420

    Article  CAS  PubMed  Google Scholar 

  • Sesso HD, Buring JE, Norkus EP et al (2004) Plasma lycopene, other carotenoids, and retinol and the risk of cardiovascular disease in women. Am J Clin Nutr 79:47–53

    CAS  PubMed  Google Scholar 

  • Slattery ML, Benson J, Curtin K et al (2000) Carotenoids and colon cancer. Am J Clin Nutr 71:575–582

    CAS  PubMed  Google Scholar 

  • Sila DN, Doungla E, Smout C et al (2006) Pectin fraction interconversions: insight into understanding texture evolution of thermally processed carrots. J Agric Food Chem 54:8471–8479

    Article  CAS  PubMed  Google Scholar 

  • Snellen ELM, Verbeek ALM, van den Hoogen GWP (2002) Neovascular age-related macular degeneration and its relationship to antioxidant intake. Acta Ophthanmol Scand 80:368–371

    Article  CAS  Google Scholar 

  • Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Aspects Med 24:345–351

    Article  CAS  PubMed  Google Scholar 

  • Stahl W, Sies H (1992) Uptake of lycopene and its geometrical isomers is greater from heat-processed than from unprocessed tomato juice in humans. J Nutr 122:2161–2166

    CAS  PubMed  Google Scholar 

  • Stinco CM, Fernández-Vázquez R, Escudero-Gilete ML et al (2012) Effect of orange juice’s processing on the color, particle size, and bioaccessibility of carotenoids. J Agric Food Chem 60:1447–1455

    Article  CAS  PubMed  Google Scholar 

  • Stracke BA, Rufer CE, Bub A et al (2009) Bioavailability and nutritional effects of carotenoids from organically and conventionally produced carrots in healthy men. Br J Nutr 101:1664–1672

    Article  CAS  PubMed  Google Scholar 

  • Sy C, Gleize B, Chamot S et al (2013) Glycosyl carotenoids from marine spore-forming Bacillus sp. strains are readily bioaccessible and bioavailable. Food Res Int 51:914–923

    Article  CAS  Google Scholar 

  • Sy C, Gleize B, Dangles O et al (2012) Effects of physicochemical properties of carotenoids on their bioaccessibility, intestinal cell uptake, and blood and tissue concentrations. Mol Nutr Food Res 56:1385–1397

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Shnimizu M, Moriwaki H (2012) Cancer chemoprevention by carotenoids. Molecules 17:3202–3242

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Qin J, Dolnikowski GG et al (2003) Short-term (intestinal) and long-term (postintestinal) conversion of β-carotene to retinol in adults as assessed by a stable-isotope reference method. Am J Clin Nutr 78:259–266

    CAS  PubMed  Google Scholar 

  • Thakkar SK, Maziya-Dixon B, Dixon AGO et al (2007) β-carotene micellarization during in vitro digestion and uptake by caco-2 cells is directly proportional to β-carotene content in different genotypes of cassava. J Nutr 137:2229–2233

    CAS  PubMed  Google Scholar 

  • Thakkar SK, Huo T, Dixon MB et al (2009) Impact of style of processing on retention and bioaccessibility of β-carotene un cassava (Manihot esculanta, Crantz). J Agric Food Chem 57:1344–1348

    Article  CAS  PubMed  Google Scholar 

  • Tyssandier V, Cardinault N, Caris-Veyrat C et al (2002) Vegetable-borne lutein, lycopene, and β-carotene compete for incorporation into chylomicrons, with no adverse effect on the medium-term (3-wk) plasma status of carotenoids in humans. Am J Clin Nutr 75:526–534

    CAS  PubMed  Google Scholar 

  • Tyssandier V, Reboul E, Dumas JF (2003) Processing of vegetable-borne carotenoids in the human stomach and duodenum. Am J Physiol Gastrointest Liver Physiol 284:G913–G923

    Article  CAS  PubMed  Google Scholar 

  • Unlu NZ, Bohn T, Clinton SK et al (2005) Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. J Nutr 135:431–436

    CAS  PubMed  Google Scholar 

  • Unlu NZ, Bohn T, Francis D et al (2007) Carotenoid absorption in humans consuming tomato sauces obtained from tangerine or high-β-carotene varieties of tomatoes. J Agric Food Chem 55:1597–1603

    Article  CAS  PubMed  Google Scholar 

  • van Bennekum A, Werder M, Thuahnai ST et al (2005) Class B scavenger receptor-mediated intestinal absorption of dietary β-carotene and cholesterol. Biochemistry 44:4517–4525

    Article  PubMed  CAS  Google Scholar 

  • van Buren JP (1979) The chemistry of texture in fruits and vegetables. J Text Stud 10:1–23

    Article  Google Scholar 

  • van den Berg H, Faulks R, Granado HF et al (2000) The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J Sci Food Agric 80:880–912

    Article  Google Scholar 

  • van het Hof KH, de Boer BCJ, Tijburg LBM et al (2000) Carotenoid bioavailability in humans from tomatoes processed in different ways determined from the carotenoid response in the triglyceride-rich lipoprotein fraction of plasma after a single consumption and in the plasma after four days of consumption. J Nutr 130:1189–1196

    Google Scholar 

  • van Lieshout M, West CE, Permaesih D et al (2001) Bioefficacy of β-carotene dissolved in oil studied in children in Indonesia. Am J Clin Nutr 73:949–958

    PubMed  Google Scholar 

  • van Lieshout M, West CE, van Breemen RB (2003) Isotopic tracer techniques for studying the bioavailability and bioefficay of dietary carotenoids, particularly β-carotene, in humans: a review. Am J Clin Nutr 77:12–28

    PubMed  Google Scholar 

  • Van Loo-Bouwman C, Naber THJ, van Breemen RB et al (2010) Vitamin A equivalency and apparent absorption of b-carotene in ileostomy subjects using a dual-isotope dilution technique. Br J Nutr 103:1836–1843

    Article  PubMed  CAS  Google Scholar 

  • van Poppel G, Goldbohm RA (1995) Epidemiologic evidence for β-carotene and cáncer prevention. Am J Clin Nutr 62:1393S–1402S

    PubMed  Google Scholar 

  • Vásquez-Caicedo AL, Heller A, Neidhart S et al (2006) Chromoplast morphology and β-carotene accumulation during postharvest ripening of mango Cv. ‘Tommy Atkins’. J Agric Food Chem 54:5769–5776

    Article  PubMed  CAS  Google Scholar 

  • Verrijssen TAJ, Balduyck LG, Christiaens S et al (2014) The effect of pectin concentration and degree of methyl-esterification on the in vitro bioaccessibility of β-carotene-enriched emulsions. Food Res Int 57:71–78

    Article  CAS  Google Scholar 

  • Verrijssen TAL, Cardinaels R, Moldenaers P et al (2013) The effect of soluble fibers in emulsions on the carotenoid bioaccessibility. Inside Food Symposium p 1–6

    Google Scholar 

  • Victoria-Campos CI, Ornelas-Paz J de J, Yahia EM (2013a) Effect of ripening, heat-processing, and fat type on the micellarization of pigments from Jalapeño peppers. J Agric Food Chem 61:9938–9949

    Article  CAS  PubMed  Google Scholar 

  • Victoria-Campos CI, Ornelas-Paz J de J, Yahia EM et al (2013b) Effect of the interaction of heat-processing style and fat type on the micellarization of lipid-soluble pigments from green and red pungent peppers (Capsicum annuum). J Agric Food Chem 61:3642–3653

    Article  CAS  PubMed  Google Scholar 

  • Wang XD (2012) Lycopene metabolism and its biological significance. Am J Clin Nutr 96:1214S–1222S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson RR, Prabhala RH, Plezia PM et al (1991) Effect of β-carotene on lymphocyte subpopulations in elderly humans: evidence for a dose-response relationship. Am J Clin Nutr 53:90–94

    CAS  PubMed  Google Scholar 

  • West CE, Castenmiller JJJM (1998) Quantification of the “SLAMENGHI” factors for carotenoid bioavailability and bioconversion. Int J Vitam Nutr Res 68:371–377

    CAS  PubMed  Google Scholar 

  • Wingerath T, Stahl W, Sies H (1995) β-Cryptoxanthin selectively increases in human chylomicrons upon ingestion of tangerine concentrate rich in β-cryptoxanthin esters. Arch Biochem Biophys 324:385–390

    Article  CAS  PubMed  Google Scholar 

  • Yahia EM, Ornelas-Paz J de J (2010) Chemistry, stability and biological actions of carotenoids. In: De la Rosa LA, Alvarez-Parrilla E, Gonzalez-Aguilar GA (eds) Fruit and vegetable phytochemicals: chemistry, nutritional value and stability. Wiley-Blackwell, Iowa, pp 177–222

    Google Scholar 

  • Yonekura L, Nagao A (2007) Intestinal absorption of dietary carotenoids. Mol Nutr Food Res 51:107–115

    Article  CAS  PubMed  Google Scholar 

  • Yonekura L, Nagao A (2009) Soluble fibers inhibit carotenoid micellarization in vitro and uptake by Caco-2 cells. Biosci Biotechnol Biochem 73:196–199

    Article  CAS  PubMed  Google Scholar 

  • Zhang LX, Cooney RV, Bertram JS (1991) Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/10 T1/2 cells: relationship to their cancer chemopreventive action. Carcinogenesis 12:2109–2114

    Article  CAS  PubMed  Google Scholar 

  • Zhang LX, Cooney RV, Bertram JS (1992) Carotenoids up-regulate connexin43 gene expression independent of their provitamin A or antioxidant properties. Cancer Res 52:5707–5712

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José de Jesús Ornelas-Paz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cervantes-Paz, B., Victoria-Campos, C.I., Ornelas-Paz, J.d.J. (2016). Absorption of Carotenoids and Mechanisms Involved in Their Health-Related Properties. In: Stange, C. (eds) Carotenoids in Nature. Subcellular Biochemistry, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-39126-7_16

Download citation

Publish with us

Policies and ethics